IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4699-d1482413.html
   My bibliography  Save this article

Attention-Based Load Forecasting with Bidirectional Finetuning

Author

Listed:
  • Firuz Kamalov

    (Department of Electrical Engineering, Canadian University Dubai, Dubai 117781, United Arab Emirates)

  • Inga Zicmane

    (Faculty of Electrical and Environmental Engineering, Riga Technical University, 1048 Riga, Latvia)

  • Murodbek Safaraliev

    (Ural Power Engineering Institute, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Linda Smail

    (College of Interdisciplinary Studies, Zayed University, Dubai 19282, United Arab Emirates)

  • Mihail Senyuk

    (Ural Power Engineering Institute, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Pavel Matrenin

    (Ural Power Engineering Institute, Ural Federal University, 620002 Yekaterinburg, Russia)

Abstract

Accurate load forecasting is essential for the efficient and reliable operation of power systems. Traditional models primarily utilize unidirectional data reading, capturing dependencies from past to future. This paper proposes a novel approach that enhances load forecasting accuracy by fine tuning an attention-based model with a bidirectional reading of time-series data. By incorporating both forward and backward temporal dependencies, the model gains a more comprehensive understanding of consumption patterns, leading to improved performance. We present a mathematical framework supporting this approach, demonstrating its potential to reduce forecasting errors and improve robustness. Experimental results on real-world load datasets indicate that our bidirectional model outperforms state-of-the-art conventional unidirectional models, providing a more reliable tool for short and medium-term load forecasting. This research highlights the importance of bidirectional context in time-series forecasting and its practical implications for grid stability, economic efficiency, and resource planning.

Suggested Citation

  • Firuz Kamalov & Inga Zicmane & Murodbek Safaraliev & Linda Smail & Mihail Senyuk & Pavel Matrenin, 2024. "Attention-Based Load Forecasting with Bidirectional Finetuning," Energies, MDPI, vol. 17(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4699-:d:1482413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Hubicka & Grzegorz Marcjasz & Rafal Weron, 2018. "A note on averaging day-ahead electricity price forecasts across calibration windows," HSC Research Reports HSC/18/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    3. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    4. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    5. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
    6. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    2. Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    4. Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
    5. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Miguel Pinhão & Miguel Fonseca & Ricardo Covas, 2022. "Electricity Spot Price Forecast by Modelling Supply and Demand Curve," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
    8. Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019. "Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 12(13), pages 1-12, July.
    9. Firuz Kamalov & Hana Sulieman & Sherif Moussa & Jorge Avante Reyes & Murodbek Safaraliev, 2024. "Powering Electricity Forecasting with Transfer Learning," Energies, MDPI, vol. 17(3), pages 1-13, January.
    10. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).
    11. Grzegorz Marcjasz & Jesus Lago & Rafa{l} Weron, 2020. "Neural networks in day-ahead electricity price forecasting: Single vs. multiple outputs," Papers 2008.08006, arXiv.org.
    12. Ciarreta, Aitor & Martinez, Blanca & Nasirov, Shahriyar, 2023. "Forecasting electricity prices using bid data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1253-1271.
    13. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    14. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    15. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    16. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    17. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    18. Simon Schnurch & Andreas Wagner, 2019. "Machine Learning on EPEX Order Books: Insights and Forecasts," Papers 1906.06248, arXiv.org, revised Sep 2019.
    19. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    20. Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4699-:d:1482413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.