IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4622-d1478532.html
   My bibliography  Save this article

Enhanced MPPT in Permanent Magnet Direct-Drive Wind Power Systems via Improved Sliding Mode Control

Author

Listed:
  • Huajun Ran

    (College of Electricity & New Energy, China Three Gorges University, Yichang 443000, China)

  • Linwei Li

    (College of Electricity & New Energy, China Three Gorges University, Yichang 443000, China)

  • Ao Li

    (College of Electricity & New Energy, China Three Gorges University, Yichang 443000, China)

  • Xinquan Wang

    (College of Electricity & New Energy, China Three Gorges University, Yichang 443000, China)

Abstract

Addressing the challenges of significant speed overshoot, stability issues, and system oscillations associated with the sliding mode control (SMC) strategy in maximum power point tracking (MPPT) for permanent magnet synchronous wind power systems, this paper introduces a fuzzy sliding mode control (FSMC) method employing an innovative exponential convergence law. By incorporating a velocity adjustment function into the traditional exponential convergence law, a novel convergence law was designed to mitigate oscillations during the sliding phase and expedite the convergence rate. Additionally, a fuzzy controller was developed to implement a fuzzy adaptive SMC strategy, optimizing the MPPT for permanent magnet synchronous wind power generation systems. Simulation results indicated that this approach offered a faster response and superior interference rejection capabilities, compared to conventional and modified SMC strategies. The improved FSMC strategy demonstrated a swift, dynamic response and excellent steady-state performance, improving the efficiency of MPPT, thus confirming the effectiveness of the proposed method.

Suggested Citation

  • Huajun Ran & Linwei Li & Ao Li & Xinquan Wang, 2024. "Enhanced MPPT in Permanent Magnet Direct-Drive Wind Power Systems via Improved Sliding Mode Control," Energies, MDPI, vol. 17(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4622-:d:1478532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Jiang & Tianyi Zhang & Jinpeng Geng & Peiguang Wang & Lei Fu, 2023. "An MPPT Strategy for Wind Turbines Combining Feedback Linearization and Model Predictive Control," Energies, MDPI, vol. 16(10), pages 1-16, May.
    2. Yuan-Chih Chang & Hao-Chin Chang & Chien-Yu Huang, 2018. "Design and Implementation of the Permanent- Magnet Synchronous Generator Drive in Wind Generation Systems," Energies, MDPI, vol. 11(7), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Htar Su Hlaing & Jia Liu & Hassan Bevrani & Toshifumi Ise, 2020. "PMSG Control for a Stand-Alone Gas Engine Generator Using Active Rectifier and VSG-Controlled Inverter," Energies, MDPI, vol. 13(1), pages 1-16, January.
    2. Yuan-Chih Chang & Chi-Ting Tsai & Yong-Lin Lu, 2019. "Current Control of the Permanent-Magnet Synchronous Generator Using Interval Type-2 T-S Fuzzy Systems," Energies, MDPI, vol. 12(15), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4622-:d:1478532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.