Reinforcement Learning for Fair and Efficient Charging Coordination for Smart Grid
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ceusters, Glenn & Rodríguez, Román Cantú & García, Alberte Bouso & Franke, Rüdiger & Deconinck, Geert & Helsen, Lieve & Nowé, Ann & Messagie, Maarten & Camargo, Luis Ramirez, 2021. "Model-predictive control and reinforcement learning in multi-energy system case studies," Applied Energy, Elsevier, vol. 303(C).
- Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
- Wang, Kang & Wang, Haixin & Yang, Zihao & Feng, Jiawei & Li, Yanzhen & Yang, Junyou & Chen, Zhe, 2023. "A transfer learning method for electric vehicles charging strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 343(C).
- Verschae, Rodrigo & Kawashima, Hiroaki & Kato, Takekazu & Matsuyama, Takashi, 2016. "Coordinated energy management for inter-community imbalance minimization," Renewable Energy, Elsevier, vol. 87(P2), pages 922-935.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
- Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
- Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
- Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
- Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
- Tungom, Chia E. & Wang, Hong & Beata, Kamuya & Niu, Ben, 2024. "SWOAM: Swarm optimized agents for energy management in grid-interactive connected buildings," Energy, Elsevier, vol. 301(C).
- Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
- Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
- Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
- Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
- Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
- Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
- Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of a Fresnel solar collector for solar cooling," Applied Energy, Elsevier, vol. 339(C).
- Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-step solar irradiation prediction based on weather forecast and generative deep learning model," Renewable Energy, Elsevier, vol. 188(C), pages 637-650.
- Jordi de la Hoz & Àlex Alonso & Sergio Coronas & Helena Martín & José Matas, 2020. "Impact of Different Regulatory Structures on the Management of Energy Communities," Energies, MDPI, vol. 13(11), pages 1-26, June.
More about this item
Keywords
charging coordination; deep reinforcement learning (RL); smart power grid; multi-objective optimization; single-agent multi-environment RL;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4557-:d:1476145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.