Reinforcement Learning for Fair and Efficient Charging Coordination for Smart Grid
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ceusters, Glenn & Rodríguez, Román Cantú & García, Alberte Bouso & Franke, Rüdiger & Deconinck, Geert & Helsen, Lieve & Nowé, Ann & Messagie, Maarten & Camargo, Luis Ramirez, 2021. "Model-predictive control and reinforcement learning in multi-energy system case studies," Applied Energy, Elsevier, vol. 303(C).
- Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
- Wang, Kang & Wang, Haixin & Yang, Zihao & Feng, Jiawei & Li, Yanzhen & Yang, Junyou & Chen, Zhe, 2023. "A transfer learning method for electric vehicles charging strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 343(C).
- Verschae, Rodrigo & Kawashima, Hiroaki & Kato, Takekazu & Matsuyama, Takashi, 2016. "Coordinated energy management for inter-community imbalance minimization," Renewable Energy, Elsevier, vol. 87(P2), pages 922-935.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jozsef Menyhart, 2025. "Electric Vehicles and Energy Communities: Vehicle-to-Grid Opportunities and a Sustainable Future," Energies, MDPI, vol. 18(4), pages 1-17, February.
- Amr A. Elshazly & Islam Elgarhy & Mohamed Mahmoud & Mohamed I. Ibrahem & Maazen Alsabaan, 2025. "A Privacy-Preserving RL-Based Secure Charging Coordinator Using Efficient FL for Smart Grid Home Batteries," Energies, MDPI, vol. 18(4), pages 1-34, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Amr A. Elshazly & Islam Elgarhy & Mohamed Mahmoud & Mohamed I. Ibrahem & Maazen Alsabaan, 2025. "A Privacy-Preserving RL-Based Secure Charging Coordinator Using Efficient FL for Smart Grid Home Batteries," Energies, MDPI, vol. 18(4), pages 1-34, February.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
- Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
- Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
- Jordi de la Hoz & Àlex Alonso & Sergio Coronas & Helena Martín & José Matas, 2020. "Impact of Different Regulatory Structures on the Management of Energy Communities," Energies, MDPI, vol. 13(11), pages 1-26, June.
- Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
- Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
- Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
- Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
- Homod, Raad Z. & Munahi, Basil Sh. & Mohammed, Hayder Ibrahim & Albadr, Musatafa Abbas Abbood & Abderrahmane, AISSA & Mahdi, Jasim M. & Ben Hamida, Mohamed Bechir & Alhasnawi, Bilal Naji & Albahri, A., 2024. "Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings," Applied Energy, Elsevier, vol. 356(C).
- Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
- Schmitz, Simon & Brucke, Karoline & Kasturi, Pranay & Ansari, Esmail & Klement, Peter, 2024. "Forecast-based and data-driven reinforcement learning for residential heat pump operation," Applied Energy, Elsevier, vol. 371(C).
- Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
- Kyritsis, A. & Voglitsis, D. & Papanikolaou, N. & Tselepis, S. & Christodoulou, C. & Gonos, I. & Kalogirou, S.A., 2017. "Evolution of PV systems in Greece and review of applicable solutions for higher penetration levels," Renewable Energy, Elsevier, vol. 109(C), pages 487-499.
- Hashemipour, Naser & Crespo del Granado, Pedro & Aghaei, Jamshid, 2021. "Dynamic allocation of peer-to-peer clusters in virtual local electricity markets: A marketplace for EV flexibility," Energy, Elsevier, vol. 236(C).
- Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Operational optimization for off-grid renewable building energy system using deep reinforcement learning," Applied Energy, Elsevier, vol. 325(C).
More about this item
Keywords
charging coordination; deep reinforcement learning (RL); smart power grid; multi-objective optimization; single-agent multi-environment RL;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4557-:d:1476145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.