IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4176-d1461314.html
   My bibliography  Save this article

Techno-Economic Design and Optimization of Hybrid Energy Systems

Author

Listed:
  • Thokozile Mazibuko

    (Department of Electrical Engineering, Faculty of Engineering, Durban University of Technology, Steve Biko Campus, Durban 4000, South Africa)

  • Katleho Moloi

    (Department of Electrical Engineering, Faculty of Engineering, Durban University of Technology, Steve Biko Campus, Durban 4000, South Africa)

  • Kayode Akindeji

    (Department of Electrical Engineering, Faculty of Engineering, Durban University of Technology, Steve Biko Campus, Durban 4000, South Africa)

Abstract

The power generation capacity must be increased to accommodate population growth and address the lack of electricity access in rural areas. Traditional power plants in South Africa are unable to keep up with the growing demand for electricity. By strategically planning and building clusters of renewable energy sources like solar and wind, microgrid operators can provide a sustainable solution that boosts electricity supply while being cost-effective and environmentally friendly. Utilizing renewable energy can help alleviate strain on power plants by reducing peak demand in constrained distribution networks. The benefits of renewable energy include lower electricity expenses, enhanced system reliability, investment reallocation, and reduced environmental impact. These advantages will enhance the efficiency of the power system and contribute economic value to society. However, integrating solar power into the network infrastructure presents challenges such as fundamental changes in network structure, its intermittent nature due to unpredictability, and geographical constraints, which can complicate the task of grid operators in balancing electricity supply and demand within system limits while minimizing costs. The study employs Homer Pro 3.18.1 software to assess the economic costs and benefits of effectively integrating renewable technologies into the power grid. The aim is to evaluate the economic and technical feasibility of investing in renewable energy projects within the network. The research outcomes can guide power system operators, planners, and designers in leveraging solar energy to drive economic growth and industrial advancement, as well as assist independent power producers in making informed investment choices.

Suggested Citation

  • Thokozile Mazibuko & Katleho Moloi & Kayode Akindeji, 2024. "Techno-Economic Design and Optimization of Hybrid Energy Systems," Energies, MDPI, vol. 17(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4176-:d:1461314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murshed, Muntasir & Ozturk, Ilhan, 2023. "Rethinking energy poverty reduction through improving electricity accessibility: A regional analysis on selected African nations," Energy, Elsevier, vol. 267(C).
    2. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    3. Solomon E. Uhunamure & Karabo Shale, 2021. "A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    4. Chunqiong Miao & Kailiang Teng & Yaodong Wang & Long Jiang, 2020. "Technoeconomic Analysis on a Hybrid Power System for the UK Household Using Renewable Energy: A Case Study," Energies, MDPI, vol. 13(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Guo, Jiaqi & Wang, Qiang & Li, Rongrong, 2024. "Can official development assistance promote renewable energy in sub-Saharan Africa countries? A matter of institutional transparency of recipient countries," Energy Policy, Elsevier, vol. 186(C).
    4. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    5. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    6. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    7. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    8. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    9. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    10. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    11. Eunil Park & Sang Jib Kwon & Angel P. Del Pobil, 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue," Sustainability, MDPI, vol. 8(10), pages 1-11, September.
    12. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    13. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    14. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    15. Amalia Suryani & Alberto Bezama & Claudia Mair-Bauernfeind & Macben Makenzi & Daniela Thrän, 2022. "Drivers and Barriers to Substituting Firewood with Biomass Briquettes in the Kenyan Tea Industry," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    16. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    17. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    18. Chinna Alluraiah Nallolla & Vijayapriya Perumal, 2022. "Optimal Design of a Hybrid Off-Grid Renewable Energy System Using Techno-Economic and Sensitivity Analysis for a Rural Remote Location," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    19. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    20. Abdulrahman AlKassem & Azeddine Draou & Abdullah Alamri & Hisham Alharbi, 2022. "Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus," Sustainability, MDPI, vol. 14(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4176-:d:1461314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.