IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p3974-d1454043.html
   My bibliography  Save this article

Characterization of Plasma-Induced Flow Thermal Effects for Wind Turbine Icing Mitigation

Author

Listed:
  • Frederico Rodrigues

    (C-MAST (Centre for Mechanical and Aerospace Science and Technologies), Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

  • Miguel Moreira

    (C-MAST (Centre for Mechanical and Aerospace Science and Technologies), Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

  • José Páscoa

    (C-MAST (Centre for Mechanical and Aerospace Science and Technologies), Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

Abstract

Dielectric barrier discharge plasma actuators have recently become desirable devices for simultaneous flow control and ice mitigation applications, with particular interest in wind turbines operating in cold climates. Considering the potential of plasma actuators for these specific applications, it is necessary to deeply understand the thermal effects generated by the plasma-induced flow to proceed with further optimizations. However, due to the local high electric field and high electromagnetic interference generated, there is a lack of experimental studies on the topic. The current work implements an in-house experimental technique based on the background-oriented schlieren principle for plasma-induced flow thermal characterization. Since this technique is based on optical measurements, it is not affected by the electromagnetic interference issues caused by the plasma discharge. A detailed experimental analysis is performed on a conventional Kapton actuator exploiting the relation between the actuator surface temperature and the induced thermal flow. The influence of the input voltage and the transient plasma-induced flow thermal behavior is analyzed. The results demonstrate that plasma actuators are fast response time devices that can heat the adjacent medium in less than a second after starting the operation.

Suggested Citation

  • Frederico Rodrigues & Miguel Moreira & José Páscoa, 2024. "Characterization of Plasma-Induced Flow Thermal Effects for Wind Turbine Icing Mitigation," Energies, MDPI, vol. 17(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3974-:d:1454043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/3974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/3974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manatbayev, Rustem & Baizhuma, Zhandos & Bolegenova, Saltanat & Georgiev, Aleksandar, 2021. "Numerical simulations on static Vertical Axis Wind Turbine blade icing," Renewable Energy, Elsevier, vol. 170(C), pages 997-1007.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    3. Sofia Agostinelli & Fabrizio Cumo & Meysam Majidi Nezhad & Giuseppe Orsini & Giuseppe Piras, 2022. "Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy," Energies, MDPI, vol. 15(5), pages 1-24, March.
    4. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    5. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.
    6. Guo, Wenfeng & Shen, He & Li, Yan & Feng, Fang & Tagawa, Kotaro, 2021. "Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 116-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3974-:d:1454043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.