IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p3947-d1453083.html
   My bibliography  Save this article

An Overview of the Multilevel Control Scheme Utilized by Microgrids

Author

Listed:
  • Marco Mussetta

    (Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy)

  • Xuan Chau Le

    (Department of Ship Electricity, Faculty of Electro-Mechanics, Naval Academy, 30 Tran Phi Street, Nha Trang City 650000, Vietnam)

  • Trung Hieu Trinh

    (Department of Electrical Engineering, The University of Da Nang—University of Science and Technology, 54 Nguyen Luong Bang St., Lien Chieu District, Da Nang City 550000, Vietnam)

  • Anh Tuan Doan

    (Department of Electrical Engineering, The University of Da Nang—University of Science and Technology, 54 Nguyen Luong Bang St., Lien Chieu District, Da Nang City 550000, Vietnam)

  • Minh Quan Duong

    (Department of Electrical Engineering, The University of Da Nang—University of Science and Technology, 54 Nguyen Luong Bang St., Lien Chieu District, Da Nang City 550000, Vietnam)

  • Gabriela Nicoleta Tanasiev

    (Power Generation and Use Department, Power Engineering Faculty, University “POLITEHNICA” of Bucharest, Splaiul Independenței No. 313, District 6, RO-060042 Bucharest, Romania)

Abstract

With the explosion in energy consumption demand, the deep penetration of renewable energy into the grid is inevitable and has become trend across the world today. Microgrids with integrated renewable energy are the core components of smart grids and will permeate all areas of human activity. Although this grid has a very flexible working principle, its heavy reliance on renewable energy sources can cause significant disturbances to the electric transmission system. Therefore, the control and monitoring processes for microgrids must be implemented through various mechanisms to ensure the microgrid system operates safely, stably, and effectively. In this paper, the research team will introduce and synthesize the multilevel control scheme of current types of microgrids. We will evaluate the advantages and disadvantages of each type of MG, providing a reference for further research in the field of microgrid control applications, both current and in the near future.

Suggested Citation

  • Marco Mussetta & Xuan Chau Le & Trung Hieu Trinh & Anh Tuan Doan & Minh Quan Duong & Gabriela Nicoleta Tanasiev, 2024. "An Overview of the Multilevel Control Scheme Utilized by Microgrids," Energies, MDPI, vol. 17(16), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3947-:d:1453083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/3947/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/3947/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyedamin Valedsaravi & Abdelali El Aroudi & Jose A. Barrado-Rodrigo & Walid Issa & Luis Martínez-Salamero, 2022. "Control Design and Parameter Tuning for Islanded Microgrids by Combining Different Optimization Algorithms," Energies, MDPI, vol. 15(10), pages 1-25, May.
    2. Xiaoling Su & Minxiao Han & Josep M. Guerrero & Hai Sun, 2015. "Microgrid Stability Controller Based on Adaptive Robust Total SMC," Energies, MDPI, vol. 8(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    2. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    3. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    4. Yan Xia & Yuchen Dai & Wenxu Yan & Dezhi Xu & Chengshun Yang, 2018. "Adaptive-Observer-Based Data Driven Voltage Control in Islanded-Mode of Distributed Energy Resource Systems," Energies, MDPI, vol. 11(12), pages 1-14, November.
    5. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    6. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    7. Isaías V. de Bessa & Renan L. P. de Medeiros & Iury Bessa & Florindo A. C. Ayres Junior & Alessandra R. de Menezes & Gustavo M. Torres & João Edgar Chaves Filho, 2020. "Comparative Study of Control Strategies for Stabilization and Performance Improvement of DC Microgrids with a CPL Connected," Energies, MDPI, vol. 13(10), pages 1-29, May.
    8. Zhiwen Yu & Qian Ai & Xing He & Longjian Piao, 2016. "Adaptive Droop Control for Microgrids Based on the Synergetic Control of Multi-Agent Systems," Energies, MDPI, vol. 9(12), pages 1-19, December.
    9. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2017. "Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid," Energies, MDPI, vol. 10(4), pages 1-17, March.
    10. Jorge Luis Anderson Azzano & Jerónimo J. Moré & Paul F. Puleston, 2019. "Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems," Energies, MDPI, vol. 12(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3947-:d:1453083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.