A Nernst-Based Approach for Modeling of Lithium-Ion Batteries with Non-Flat Voltage Characteristics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
- Hairui Wang & Xin Ye & Yuanbo Li & Guifu Zhu, 2023. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Mode Decomposition and Time Series," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
- Bingyu Sang & Zaijun Wu & Bo Yang & Junjie Wei & Youhong Wan, 2024. "Joint Estimation of SOC and SOH for Lithium-Ion Batteries Based on Dual Adaptive Central Difference H-Infinity Filter," Energies, MDPI, vol. 17(7), pages 1-16, March.
- Lu Liu & Wei Sun & Chuanxu Yue & Yunhai Zhu & Weihuan Xia, 2024. "Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Small Sample Models," Energies, MDPI, vol. 17(19), pages 1-17, October.
- Yan Liu & Jun Chen & Jun Yong & Cheng Yang & Liqin Yan & Yanping Zheng, 2024. "Remaining Service Life Prediction of Lithium-Ion Batteries Based on Randomly Perturbed Traceless Particle Filtering," Energies, MDPI, vol. 17(21), pages 1-17, November.
- Yanming Li & Xiaojuan Qin & Furong Ma & Haoran Wu & Min Chai & Fujing Zhang & Fenghe Jiang & Xu Lei, 2024. "Fusion Technology-Based CNN-LSTM-ASAN for RUL Estimation of Lithium-Ion Batteries," Sustainability, MDPI, vol. 16(21), pages 1-22, October.
- You, Yuqiang & Lin, Mingqiang & Meng, Jinhao & Wu, Ji & Wang, Wei, 2024. "Multi-scenario surface temperature estimation in lithium-ion batteries with transfer learning and LGT augmentation," Energy, Elsevier, vol. 304(C).
More about this item
Keywords
Li-ion battery modeling; SoC prediction; Nernst equation; energy management system; CGR18650AF; NCR18650B; Tesla 4680;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3914-:d:1452153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.