IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3835-d1449413.html
   My bibliography  Save this article

IntiGIS-Local: A Geospatial Approach to Assessing Rural Electrification Alternatives for Sustainable Socio-Economic Development in Isolated Communities—A Case Study of Guasasa, Cuba

Author

Listed:
  • Javier Domínguez

    (Renewable Energies Division, Centro de Investigaciones Energéticas, 28040 Madrid, Spain)

  • Carlo Bellini

    (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Luis Arribas

    (Renewable Energies Division, Centro de Investigaciones Energéticas, 28040 Madrid, Spain)

  • Julio Amador

    (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Electrical Engineering, Electronics, Automation and Applied Physics, School of Industrial Engineering and Design, Polytechnic University of Madrid, 28012 Madrid, Spain)

  • Mirelys Torres-Pérez

    (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Informatics, University of Las Tunas, Las Tunas 75100, Cuba)

  • Ana M. Martín

    (Renewable Energies Division, Centro de Investigaciones Energéticas, 28040 Madrid, Spain)

Abstract

Rural electrification is a crucial step for the socio-economic development of isolated communities. Decentralized power generation, typically more favorable for renewable energies, requires an accurate analysis of the different electrification options, whose convenience depends on multiple factors. The application of Geographical Information Systems (GISs) to energy planning allows the assessment at a local level, considering the variability and demand distribution of spatial resources. This work introduces IntiGIS-local, a GIS-based model implemented in the ArcGIS environment, designed to calculate the levelized energy cost (LEC) for different electrification options. The model allows the comparison between three power generation alternatives: solar system, diesel generator set and solar–diesel hybrid system. Configurations are adjustable through input variables, with a special focus on the confrontation between individual systems and microgrids. The objective is to provide an adequate groundwork for developing a decision-making tool to assess diverse rural electrification options in future studies. The model IntiGIS-local is tested in the case study of the Guasasa community (Cuba).

Suggested Citation

  • Javier Domínguez & Carlo Bellini & Luis Arribas & Julio Amador & Mirelys Torres-Pérez & Ana M. Martín, 2024. "IntiGIS-Local: A Geospatial Approach to Assessing Rural Electrification Alternatives for Sustainable Socio-Economic Development in Isolated Communities—A Case Study of Guasasa, Cuba," Energies, MDPI, vol. 17(15), pages 1-37, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3835-:d:1449413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva Herran, Diego & Nakata, Toshihiko, 2012. "Design of decentralized energy systems for rural electrification in developing countries considering regional disparity," Applied Energy, Elsevier, vol. 91(1), pages 130-145.
    2. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    3. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    4. Amador, J. & Domínguez, J., 2005. "Application of geographical information systems to rural electrification with renewable energy sources," Renewable Energy, Elsevier, vol. 30(12), pages 1897-1912.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    2. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "How effective are small-scale energy interventions in developing countries? Results from a post-evaluation on project-level," Applied Energy, Elsevier, vol. 135(C), pages 809-814.
    3. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    4. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    5. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    6. Gonzalez, Arnau & Riba, Jordi-Roger & Esteban, Bernat & Rius, Antoni, 2018. "Environmental and cost optimal design of a biomass–Wind–PV electricity generation system," Renewable Energy, Elsevier, vol. 126(C), pages 420-430.
    7. Abdelkader, Abbassi & Rabeh, Abbassi & Mohamed Ali, Dami & Mohamed, Jemli, 2018. "Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage," Energy, Elsevier, vol. 163(C), pages 351-363.
    8. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    9. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    10. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    11. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    12. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    13. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    14. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    15. Ramírez-Rosado, Ignacio J. & García-Garrido, Eduardo & Fernández-Jiménez, L. Alfredo & Zorzano-Santamaría, Pedro J. & Monteiro, Cláudio & Miranda, Vladimiro, 2008. "Promotion of new wind farms based on a decision support system," Renewable Energy, Elsevier, vol. 33(4), pages 558-566.
    16. Jamal, Taskin & Carter, Craig & Schmidt, Thomas & Shafiullah, G.M. & Calais, Martina & Urmee, Tania, 2019. "An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system," Applied Energy, Elsevier, vol. 254(C).
    17. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    19. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2016. "The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland," Energy Policy, Elsevier, vol. 96(C), pages 432-445.
    20. Yuehong Lu & Mohammed Alghassab & Manuel S. Alvarez-Alvarado & Hasan Gunduz & Zafar A. Khan & Muhammad Imran, 2020. "Optimal Distribution of Renewable Energy Systems Considering Aging and Long-Term Weather Effect in Net-Zero Energy Building Design," Sustainability, MDPI, vol. 12(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3835-:d:1449413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.