IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3592-d1440043.html
   My bibliography  Save this article

Multi-Agent Reinforcement Learning Optimization Framework for On-Grid Electric Vehicle Charging from Base Transceiver Stations Using Renewable Energy and Storage Systems

Author

Listed:
  • Abdullah Altamimi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Muhammad Bilal Ali

    (U.S Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Syed Ali Abbas Kazmi

    (U.S Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Zafar A. Khan

    (Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur A.K. 10250, Pakistan)

Abstract

Rapid growth in a number of developing nations’ mobile telecommunications sectors presents network operators with difficulties such as poor service quality and congestion, mostly because these locations lack a dependable and reasonably priced electrical source. In order to provide a sustainable and reasonably priced energy alternative for the developing world, this study provides a detailed examination of the core ideas behind renewable energy technology (RET). A multi-agent-based small-scaled smart base transceiver station (BTS) site reinforcement strategy is presented to manage energy resources by boosting resilience so to supply power to essential loads in peak demand periods by leveraging demand-side management (DSM). Diverse energy sources are combined to create interconnected BTS sites, which enable energy sharing to balance fluctuations by establishing a market that promotes economical energy. A MATLAB simulation model was developed to assess the effectiveness of the proposed system by using real load data and fast electric vehicle charging loads from five different base transceiver stations (BTSs) located throughout Pakistan’s southern area. In this proposed study, the base transceiver station (BTS) sites can share their energy through a multi-agent-based system. From the results, it is observed that, after optimization, the base transceiver station (BTS) sites trade their energy with the grid at rate of 0.08 USD/kWh and with other sites at a rate of 0.04 USD/kWh. Therefore, grid dependency is decreased by 44.3% and carbon emissions are reduced by 71.4% after the optimization of the base transceiver station (BTS) sites.

Suggested Citation

  • Abdullah Altamimi & Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Zafar A. Khan, 2024. "Multi-Agent Reinforcement Learning Optimization Framework for On-Grid Electric Vehicle Charging from Base Transceiver Stations Using Renewable Energy and Storage Systems," Energies, MDPI, vol. 17(14), pages 1-33, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3592-:d:1440043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2010. "A multi-agent system for energy management of distributed power sources," Renewable Energy, Elsevier, vol. 35(1), pages 174-182.
    2. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongbin Sun & Zhenyu Duan & Anyun Yang, 2024. "Microgrid Optimization Strategy for Charging and Swapping Power Stations with New Energy Based on Multi-Agent Reinforcement Learning," Sustainability, MDPI, vol. 16(23), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    2. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    3. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    4. Cheol-Hee Yoo & Il-Yop Chung & Hak-Ju Lee & Sung-Soo Hong, 2013. "Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management," Energies, MDPI, vol. 6(10), pages 1-24, September.
    5. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    6. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    7. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    8. Kim, Taewan & Song, Jeonghwan & You, Donghyun, 2024. "Optimization of a wind farm layout to mitigate the wind power intermittency," Applied Energy, Elsevier, vol. 367(C).
    9. Wang, B.C. & Sechilariu, M. & Locment, F., 2013. "Power flow Petri Net modelling for building integrated multi-source power system with smart grid interaction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 119-133.
    10. Myada Shadoul & Rashid Al Abri & Hassan Yousef & Abdullah Al Shereiqi, 2024. "Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique," Energies, MDPI, vol. 17(13), pages 1-27, July.
    11. Cl'emence Alasseur & Ivar Ekeland & Romuald Elie & Nicol'as Hern'andez Santib'a~nez & Dylan Possamai, 2017. "An adverse selection approach to power pricing," Papers 1706.01934, arXiv.org, revised Sep 2019.
    12. Wang, Chen & Guo, Su & Pei, Huanjin & He, Yi & Liu, Deyou & Li, Mengying, 2023. "Rolling optimization based on holism for the operation strategy of solar tower power plant," Applied Energy, Elsevier, vol. 331(C).
    13. Sang-Jin Oh & Cheol-Hee Yoo & Il-Yop Chung & Dong-Jun Won, 2013. "Hardware-in-the-Loop Simulation of Distributed Intelligent Energy Management System for Microgrids," Energies, MDPI, vol. 6(7), pages 1-21, July.
    14. Khodr, H.M. & El Halabi, N. & García-Gracia, M., 2012. "Intelligent renewable microgrid scheduling controlled by a virtual power producer: A laboratory experience," Renewable Energy, Elsevier, vol. 48(C), pages 269-275.
    15. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Prévost, Adrien & Demichel, François & Léchappé, Vincent & Helbling, Hugo & Delpoux, Romain & Brun, Xavier, 2025. "A framework for technico-environmental optimization of small wind turbines," Applied Energy, Elsevier, vol. 377(PC).
    17. B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Ehab E. Elattar & Salah Kamel, 2021. "Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
    18. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    19. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    20. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3592-:d:1440043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.