IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3573-d1439342.html
   My bibliography  Save this article

Joint Modeling of Wind Speed and Power via a Nonparametric Approach

Author

Listed:
  • Saulo Custodio de Aquino Ferreira

    (Industrial Engineering Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-040, Brazil)

  • Paula Medina Maçaira

    (Industrial Engineering Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-040, Brazil)

  • Fernando Luiz Cyrino Oliveira

    (Industrial Engineering Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-040, Brazil)

Abstract

Power output from wind turbines is influenced by wind speed, but the traditional theoretical power curve approach introduces uncertainty into wind energy forecasting models. This is because it assumes a consistent power output for a given wind speed. To address this issue, a new nonparametric method has been proposed. It uses K-means clustering to estimate wind speed intervals, applies kernel density estimation (KDE) to establish the probability density function (PDF) for each interval and employs Monte Carlo simulation to predict power output based on the PDF. The method was tested using data from the MERRA-2 database, covering five wind farms in Brazil. The results showed that the new method outperformed the conventional estimation technique, improving estimates by an average of 47 to 49%. This study contributes by (i) proposing a new nonparametric method for modeling the relationship between wind speed and power; (ii) emphasizing the superiority of probabilistic modeling in capturing the natural variability in wind generation; (iii) demonstrating the benefits of temporally segregating data; (iv) highlighting how different wind farms within the same region can have distinct generation profiles due to environmental and technical factors; and (v) underscoring the significance and reliability of the data provided by the MERRA-2 database.

Suggested Citation

  • Saulo Custodio de Aquino Ferreira & Paula Medina Maçaira & Fernando Luiz Cyrino Oliveira, 2024. "Joint Modeling of Wind Speed and Power via a Nonparametric Approach," Energies, MDPI, vol. 17(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3573-:d:1439342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Jiang & Zheng, Yan & Donghan, Feng, 2009. "A review on reliability assessment for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2485-2494, December.
    2. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    3. Thapar, Vinay & Agnihotri, Gayatri & Sethi, Vinod Krishna, 2011. "Critical analysis of methods for mathematical modelling of wind turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3166-3177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung, 2024. "Recent Development and Future Perspective of Wind Power Generation," Energies, MDPI, vol. 17(21), pages 1-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    2. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    3. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    4. Carrillo, C. & Obando Montaño, A.F. & Cidrás, J. & Díaz-Dorado, E., 2013. "Review of power curve modelling for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 572-581.
    5. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
    6. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    7. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
    8. Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
    9. Seo, Seokho & Oh, Si-Doek & Kwak, Ho-Young, 2019. "Wind turbine power curve modeling using maximum likelihood estimation method," Renewable Energy, Elsevier, vol. 136(C), pages 1164-1169.
    10. Siyu Tao & Qingshan Xu & Andrés Feijóo & Stefanie Kuenzel & Neeraj Bokde, 2019. "Integrated Wind Farm Power Curve and Power Curve Distribution Function Considering the Wake Effect and Terrain Gradient," Energies, MDPI, vol. 12(13), pages 1-14, June.
    11. Arenas-López, J. Pablo & Badaoui, Mohamed, 2020. "The Ornstein-Uhlenbeck process for estimating wind power under a memoryless transformation," Energy, Elsevier, vol. 213(C).
    12. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    13. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
    14. Zhang, Zijun & Kusiak, Andrew & Song, Zhe, 2013. "Scheduling electric power production at a wind farm," European Journal of Operational Research, Elsevier, vol. 224(1), pages 227-238.
    15. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    16. Eryilmaz, Serkan & Navarro, Jorge, 2022. "A decision theoretic framework for reliability-based optimal wind turbine selection," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    18. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2016. "The impact of inter-regional transmission grid expansion on China’s power sector decarbonization," Applied Energy, Elsevier, vol. 183(C), pages 853-873.
    19. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
    20. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3573-:d:1439342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.