IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3439-d1433959.html
   My bibliography  Save this article

Building a Sustainable Future: A Three-Stage Risk Management Model for High-Permeability Power Grid Engineering

Author

Listed:
  • Weijie Wu

    (Power Grid Planning Research Center of Guangdong Power Grid Corporation, Guangzhou 510080, China)

  • Dongwei Li

    (CEC Technical & Economic Consulting Center of Power Construction, Beijing 100053, China)

  • Hui Sun

    (Power Grid Planning Research Center of Guangdong Power Grid Corporation, Guangzhou 510080, China)

  • Yixin Li

    (Power Grid Planning Research Center of Guangdong Power Grid Corporation, Guangzhou 510080, China)

  • Yining Zhang

    (Power Grid Planning Research Center of Guangdong Power Grid Corporation, Guangzhou 510080, China)

  • Mingrui Zhao

    (CEC Technical & Economic Consulting Center of Power Construction, Beijing 100053, China)

Abstract

Under the background of carbon neutrality, it is important to construct a large number of high-permeability power grid engineering (HPGE) systems, since these can aid in addressing the security and stability challenges brought about by the high proportion of renewable energy. Construction and engineering frequently involve multiple risk considerations. In this study, we constructed a three-stage comprehensive risk management model of HPGE, which can help to overcome the issues of redundant risk indicators, imprecise risk assessment techniques, and irrational risk warning models in existing studies. First, we use the fuzzy Delphi model to identify the key risk indicators of HPGE. Then, the Bayesian best–worst method (Bayesian BWM) is adopted, as well as the measurement alternatives and ranking according to the compromise solution (MARCOS) approach, to evaluate the comprehensive risks of projects; these methods are proven to have more reliable weighting results and a larger sample separation through comparative analysis. Finally, we established an early warning risk model on the basis of the non-compensation principle, which can help prevent the issue of actual risk warning outcomes from being obscured by some indicators. The results show that the construction of the new power system and clean energy consumption policy are the key risk factors affecting HPGE. It was found that four projects are in an extremely high-risk warning state, five are in a relatively high-risk warning state, and one is in a medium-risk warning state. Therefore, it is necessary to strengthen the risk prevention of HPGE and to develop a reasonable closed-loop risk control mechanism.

Suggested Citation

  • Weijie Wu & Dongwei Li & Hui Sun & Yixin Li & Yining Zhang & Mingrui Zhao, 2024. "Building a Sustainable Future: A Three-Stage Risk Management Model for High-Permeability Power Grid Engineering," Energies, MDPI, vol. 17(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3439-:d:1433959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rao Rao & Xingping Zhang & Zhiping Shi & Kaiyan Luo & Zhongfu Tan & Yifan Feng, 2014. "A Systematical Framework of Schedule Risk Management for Power Grid Engineering Projects’ Sustainable Development," Sustainability, MDPI, vol. 6(10), pages 1-30, October.
    2. Zhang, Yuanyuan & Zhao, Huiru & Li, Bingkang & Zhao, Yihang & Qi, Ze, 2022. "Research on credit rating and risk measurement of electricity retailers based on Bayesian Best Worst Method-Cloud Model and improved Credit Metrics model in China's power market," Energy, Elsevier, vol. 252(C).
    3. Zhuola Zhang & Shiyuan Lin & Yingjin Ye & Zhao Xu & Yihang Zhao & Huiru Zhao & Jingqi Sun, 2022. "A Hybrid MCDM Model for Evaluating the Market-Oriented Business Regulatory Risk of Power Grid Enterprises Based on the Bayesian Best-Worst Method and MARCOS Approach," Energies, MDPI, vol. 15(9), pages 1-17, April.
    4. Jiao Wang, 2020. "Construction of Risk Evaluation Index System for Power Grid Engineering Cost by Applying WBS-RBS and Membership Degree Methods," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, August.
    5. Yana Duan & Yang Sun & Yu Zhang & Xiaoqi Fan & Qinghuan Dong & Sen Guo, 2021. "Risk Evaluation of Electric Power Grid Investment in China Employing a Hybrid Novel MCDM Method," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    6. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    7. Xinping Wang & Cheng Zhang & Jun Deng & Chang Su & Zhenzhe Gao, 2022. "Analysis of Factors Influencing Miners’ Unsafe Behaviors in Intelligent Mines using a Novel Hybrid MCDM Model," IJERPH, MDPI, vol. 19(12), pages 1-30, June.
    8. G.K. Koulinas & O.E. Demesouka & P.K. Marhavilas & A.P. Vavatsikos & D.E. Koulouriotis, 2019. "Risk Assessment Using Fuzzy TOPSIS and PRAT for Sustainable Engineering Projects," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changzheng Gao & Xiuna Wang & Dongwei Li & Chao Han & Weiyang You & Yihang Zhao, 2023. "A Novel Hybrid Power-Grid Investment Optimization Model with Collaborative Consideration of Risk and Benefit," Energies, MDPI, vol. 16(20), pages 1-23, October.
    2. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    3. Himanshu Gupta & Manjeet Kharub & Kumar Shreshth & Ashwani Kumar & Donald Huisingh & Anil Kumar, 2023. "Evaluation of strategies to manage risks in smart, sustainable agri‐logistics sector: A Bayesian‐based group decision‐making approach," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4335-4359, November.
    4. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    5. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    6. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    7. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    8. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    9. Zhang, Hong & Gu, Chao-lin & Gu, Lu-wen & Zhang, Yan, 2011. "The evaluation of tourism destination competitiveness by TOPSIS & information entropy – A case in the Yangtze River Delta of China," Tourism Management, Elsevier, vol. 32(2), pages 443-451.
    10. Volkan Hasan Kaya & Doris Elster, 2019. "A Critical Consideration of Environmental Literacy: Concepts, Contexts, and Competencies," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    11. Petreski Marjan & Petreski Blagica & Tumanoska Despina & Narazani Edlira & Kazazi Fatush & Ognjanov Galjina & Jankovic Irena & Mustafa Arben & Kochovska Tereza, 2017. "The Size and Effects of Emigration and Remittances in the Western Balkans. A Forecasting Based on a Delphi Process," Südosteuropa. Journal of Politics and Society, De Gruyter, vol. 65(4), pages 679-695, December.
    12. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    13. Aparicio, Gloria & Basco, Rodrigo & Iturralde, Txomin & Maseda, Amaia, 2017. "An exploratory study of firm goals in the context of family firms: An institutional logics perspective," Journal of Family Business Strategy, Elsevier, vol. 8(3), pages 157-169.
    14. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    15. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Sheida Abdoli & Farah Habib & Mohammad Babazadeh, 2018. "Making spatial development scenario for south of Bushehr province, Iran, based on strategic foresight," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1293-1309, June.
    17. Shannon Li & Anne Honey & Francesca Coniglio & Peter Schaecken, 2022. "Mental Health Peer Worker Perspectives on Resources Developed from Lived Experience Research Findings: A Delphi Study," IJERPH, MDPI, vol. 19(7), pages 1-15, March.
    18. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    19. Chen, Peng-Ting & Cheng, Joe Z. & Yu, Ya-Wen & Ju, Pei-Hung, 2014. "Mobile advertising setting analysis and its strategic implications," Technology in Society, Elsevier, vol. 39(C), pages 129-141.
    20. Xilin Zhang & Yuejin Tan & Zhiwei Yang, 2018. "Rework Quantification and Influence of Rework on Duration and Cost of Equipment Development Task," Sustainability, MDPI, vol. 10(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3439-:d:1433959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.