IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3339-d1430710.html
   My bibliography  Save this article

Hydropower Enhancing the Future of Variable Renewable Energy Integration: A Regional Analysis of Capacity Availability in Brazil

Author

Listed:
  • Simone Quaresma Brandão

    (Department of Production Engineering and Operations Management, Universidade de São Paulo, Avenida Prof. Almeida Prado, 128, São Paulo CEP05508-070, SP, Brazil)

  • Erik Eduardo Rego

    (Department of Production Engineering and Operations Management, Universidade de São Paulo, Avenida Prof. Almeida Prado, 128, São Paulo CEP05508-070, SP, Brazil)

  • Rafaela Veiga Pillar

    (Empresa de Pesquisa Energética, Praça Pio X, 54, Rio de Janeiro CEP20091-040, RJ, Brazil)

  • Renata Nogueira Francisco de Carvalho

    (Department of Production Engineering and Operations Management, Universidade de São Paulo, Avenida Prof. Almeida Prado, 128, São Paulo CEP05508-070, SP, Brazil)

Abstract

As the share of variable renewables in the power system generation mix increases, meeting capacity requirements becomes challenging. In this context, hydropower reservoirs can play a vital role in integrating renewable energy due to their storage potential, contributing to meeting power supply criteria. However, given that reservoirs serve multiple purposes, various constraints can limit their capacity potential. This article introduces an analytical methodology that is designed to evaluate the maximum available power of hydro plants in critical scenarios. By applying concepts related to hydropower production calculations for the peak power demand and metrics evaluating the compliance with supply criteria, this study distinguishes itself from region-specific investigations. It conducts a generalized analysis of power availability across all regions of Brazil, with a focus on identifying the reasons for the most significant power losses and their specific locations. The results of this analysis demonstrate the feasibility of enhancing the available power of reservoirs, effectively addressing demand fluctuations, and sustainably improving energy security. This is particularly crucial in countries that are heavily reliant on renewables, including hydropower, for a huge portion of their electricity. The findings underscore the feasibility of increasing the penetration of variable renewable generation by optimizing the operation of existing hydropower plants. This optimization not only enhances energy security but also contributes to a more resilient and sustainable future, benefiting policy makers, energy planners, and stakeholders in the field of hydropower with reservoirs.

Suggested Citation

  • Simone Quaresma Brandão & Erik Eduardo Rego & Rafaela Veiga Pillar & Renata Nogueira Francisco de Carvalho, 2024. "Hydropower Enhancing the Future of Variable Renewable Energy Integration: A Regional Analysis of Capacity Availability in Brazil," Energies, MDPI, vol. 17(13), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3339-:d:1430710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garrett, Kayla P. & McManamay, Ryan A. & Witt, Adam, 2023. "Harnessing the power of environmental flows: Sustaining river ecosystem integrity while increasing energy potential at hydropower dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Ibanez, Eduardo & Magee, Timothy & Clement, Mitch & Brinkman, Gregory & Milligan, Michael & Zagona, Edith, 2014. "Enhancing hydropower modeling in variable generation integration studies," Energy, Elsevier, vol. 74(C), pages 518-528.
    3. L.J. De Vries and R.A. Verzijlbergh, 2018. "How Renewable Energy is Reshaping Europes Electricity Market Design," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    4. Drouineau, Mathilde & Maïzi, Nadia & Mazauric, Vincent, 2014. "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," Applied Energy, Elsevier, vol. 116(C), pages 333-343.
    5. Basso, S. & Lazzaro, G. & Bovo, M. & Soulsby, C. & Botter, G., 2020. "Water-energy-ecosystem nexus in small run-of-river hydropower: Optimal design and policy," Applied Energy, Elsevier, vol. 280(C).
    6. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    7. Arbuckle, Evan J. & Binsted, Matthew & Davies, Evan G.R. & Chiappori, Diego V. & Bergero, Candelaria & Siddiqui, Muhammad-Shahid & Roney, Christopher & McJeon, Haewon C. & Zhou, Yuyu & Macaluso, Nick, 2021. "Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns?," Energy Policy, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique M. Bain & Thomas L. Acker, 2018. "Hydropower Impacts on Electrical System Production Costs in the Southwest United States," Energies, MDPI, vol. 11(2), pages 1-21, February.
    2. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    5. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    6. Kenjiro Yagi & Ramteen Sioshansi, 2023. "Simplifying capacity planning for electricity systems with hydroelectric and renewable generation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    7. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    8. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    9. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    10. Arjmand, Reza & Monroe, Jacob & McPherson, Madeleine, 2023. "The role of emerging technologies in Canada's electricity system transition," Energy, Elsevier, vol. 278(PA).
    11. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    12. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    13. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    14. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    15. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Yang, Ting & Pen, Haibo & Wang, Dan & Wang, Zhaoxia, 2016. "Harmonic analysis in integrated energy system based on compressed sensing," Applied Energy, Elsevier, vol. 165(C), pages 583-591.
    17. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    18. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    19. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    20. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3339-:d:1430710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.