IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3337-d1430625.html
   My bibliography  Save this article

Development and Performance Evaluation Experiment of a Device for Simultaneous Reduction of SO x and PM

Author

Listed:
  • Kyeong-Ju Kong

    (Major of Mechanical System Engineering, Pukyong National University, Busan 48513, Republic of Korea)

  • Sung-Chul Hwang

    (R&D Center, GET-SCR Co., Ltd., Miryang 50404, Republic of Korea)

Abstract

Mitigating air pollutants such as SO x and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SO x and PM individually poses challenges due to spatial constraints on ships. Consequently, a Total Gas Cleaning System (TGCS) capable of simultaneously reducing sulfur oxides and particulate matter has been developed. The TGCS combines a cyclone dust collector and a wet scrubber system. The cyclone dust collector is designed to maintain a certain distance from the bottom of the wet scrubber, allowing exhaust gases entering from the bottom to rise as sulfur oxides are adsorbed. Additionally, the exhaust gases descending through the space between the cyclone dust collector and the wet scrubber collide with the scrubbing solution before entering the bottom of the wet scrubber, facilitating the absorption of SO x . In this study, the efficiency of the developed TGCS was evaluated, and the reduction effects based on design parameters were investigated. Furthermore, the impact of this device on ship engines was analyzed to assess its practical applicability. Experimental results showed that increasing the volume flow rate of the cleaning solution enhanced the PM reduction effect. Particularly, when the height of the Pall ring was 1000 mm and the volume flow rate was 35 L/min, the sulfur oxide reduction effect met the standards for Sulfur Emission Control Areas (SECA). Based on these findings, suggestions for effectively controlling atmospheric pollutants from ships were made, with the expectation of contributing to the development of systems combining various after-treatment devices.

Suggested Citation

  • Kyeong-Ju Kong & Sung-Chul Hwang, 2024. "Development and Performance Evaluation Experiment of a Device for Simultaneous Reduction of SO x and PM," Energies, MDPI, vol. 17(13), pages 1-10, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3337-:d:1430625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Mădălin Chivu & Jorge Martins & Florin Popescu & Krisztina Uzuneanu & Ion V. Ion & Margarida Goncalves & Teodor-Cezar Codău & Elena Onofrei & Francisco P. Brito, 2023. "Turpentine as an Additive for Diesel Engines: Experimental Study on Pollutant Emissions and Engine Performance," Energies, MDPI, vol. 16(13), pages 1-18, July.
    2. Zhiyuan Yang & Haowen Chen & Changxiong Li & Hao Guo & Qinming Tan, 2023. "Performance Test and Structure Optimization of a Marine Diesel Particulate Filter," Energies, MDPI, vol. 16(11), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinxi Zhou & Junling Zhang & Guoxian Jiang & Kai Xie, 2024. "Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry," Sustainability, MDPI, vol. 16(15), pages 1-17, August.
    2. Robert Mădălin Chivu & Jorge Martins & Florin Popescu & Margarida Gonçalves & Krisztina Uzuneanu & Michael Frătița & Francisco P. Brito, 2024. "Assessment of Engine Performance and Emissions with Eucalyptus Oil and Diesel Blends," Energies, MDPI, vol. 17(14), pages 1-17, July.
    3. Genii Kuznetsov & Vadim Dorokhov & Ksenia Vershinina & Susanna Kerimbekova & Daniil Romanov & Ksenia Kartashova, 2023. "Composite Liquid Biofuels for Power Plants and Engines: Review," Energies, MDPI, vol. 16(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3337-:d:1430625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.