IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3194-d1425047.html
   My bibliography  Save this article

Photovoltaic Capacity Management for Investment Effectiveness

Author

Listed:
  • Tomasz Brzęczek

    (Faculty of Engineering Management, Poznan University of Technology, 61-131 Poznań, Poland)

  • Łukasz Hadaś

    (Faculty of Engineering Management, Poznan University of Technology, 61-131 Poznań, Poland)

Abstract

The production of photovoltaic utility varies within the day/night cycle. At night, photovoltaic cells do not produce anything. However, their day-light production, unconsumed on a current basis and exported to the grid, is compensated for with supply from the grid at night. This scheme of exploitation is called net-metering and is considered herein. Solar energy produced by a prosumer and fed into the grid has to be equal to the electricity supplied from the grid at night; otherwise, a shortage or waste of photovoltaic production occurs. The above finding leads us to the proposition for the optimal solution of photovoltaic capacity. We derived a closed-form capacity solution to the maximized non-linear profit function. It solves harmonic and 2-point production functions that vary symmetrically around the mean production. To verify the solution methodology, harmonic and 2-point models from empirical production data are estimated. Then, the solution is presented together with its return rate and internal return rate. The main finding is that the unit cost of the grid electricity, photovoltaic capacity unit cost and exploitation time all affect the total profit and return rate values while not impacting the optimal capacity of the photovoltaics. The optimal capacity depends on the prosumer’s energy consumption volume and on the natural conditions of production captured here by the technology efficiency coefficient estimated from the production time series.

Suggested Citation

  • Tomasz Brzęczek & Łukasz Hadaś, 2024. "Photovoltaic Capacity Management for Investment Effectiveness," Energies, MDPI, vol. 17(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3194-:d:1425047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helena Gaspars-Wieloch, 2017. "Newsvendor problem under complete uncertainty: a case of innovative products," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 561-585, September.
    2. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    3. Alexander Vasin & Polina Kartunova & Gerhard-Wilhelm Weber, 2013. "Models for capacity and electricity market design," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 651-661, September.
    4. Lucio Enrico Zavanella & Beatrice Marchi & Simone Zanoni & Ivan Ferretti, 2019. "Energy considerations for the economic production quantity and the joint economic lot sizing," Journal of Business Economics, Springer, vol. 89(7), pages 845-865, September.
    5. Yoza, Akihiro & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa, 2014. "Optimal capacity and expansion planning methodology of PV and battery in smart house," Renewable Energy, Elsevier, vol. 69(C), pages 25-33.
    6. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    7. Tao Yi & Ling Tong & Mohan Qiu & Jinpeng Liu, 2019. "Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China," Energies, MDPI, vol. 12(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatrice Marchi & Simone Zanoni & Marco Pasetti, 2019. "Multi-Period Newsvendor Problem for the Management of Battery Energy Storage Systems in Support of Distributed Generation," Energies, MDPI, vol. 12(23), pages 1-13, December.
    2. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    3. Wei Chen & Yongle Tian & Kaiming Zheng & Nana Wan, 2023. "Influences of mechanisms on investment in renewable energy storage equipment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12569-12595, November.
    4. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    5. Heinz Stigler & Udo Bachhiesl & Gernot Nischler & Gerald Feichtinger, 2016. "ATLANTIS: techno-economic model of the European electricity sector," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 965-988, December.
    6. Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
    7. Li, Wei & Han, Song & Guo, Xi & Xie, Shufan & Rong, Na & Zhang, Qingling, 2025. "Transient modeling and switching logic analysis of a power-electronic-assisted OLTC based Sen transformer," Applied Energy, Elsevier, vol. 378(PA).
    8. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    9. Baigali Erdenebat & Naomitsu Urasaki & Sergelen Byambaa, 2022. "A Strategy for Grid-Connected PV-Battery System of Mongolian Ger," Energies, MDPI, vol. 15(5), pages 1-13, March.
    10. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    11. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    12. Markus Hilbert & Andreas Dellnitz & Andreas Kleine, 2023. "Production planning under RTP, TOU and PPA considering a redox flow battery storage system," Annals of Operations Research, Springer, vol. 328(2), pages 1409-1436, September.
    13. Suchitra Pattnaik & Mitali Madhusmita Nayak & Stefano Abbate & Piera Centobelli, 2021. "Recent Trends in Sustainable Inventory Models: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    14. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    15. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    16. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    17. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    18. Yongshi Jie & Xianhua Ji & Anzhi Yue & Jingbo Chen & Yupeng Deng & Jing Chen & Yi Zhang, 2020. "Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification," Energies, MDPI, vol. 13(24), pages 1-19, December.
    19. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
    20. Beatrice Marchi & Simone Zanoni & Ivan Ferretti, 2019. "Energy Efficiency Investments in Industry with Uncertain Demand Rate: Effects on the Specific Energy Consumption," Energies, MDPI, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3194-:d:1425047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.