IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3125-d1421733.html
   My bibliography  Save this article

Commercial Small-Scale Horizontal and Vertical Wind Turbines: A Comprehensive Review of Geometry, Materials, Costs and Performance

Author

Listed:
  • Antonio Rosato

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Achille Perrotta

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Luigi Maffei

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

Abstract

The effective exploitation of renewable energy sources is one of the most effective solutions to counter the energy, environmental and economic problems associated with the use of fossil fuels. Small-scale wind turbines (converting wind energy into electric energy with a power output lower than 50 kW) have received tremendous attention over the past few decades thanks to their reduced environmental impact, high efficiency, low maintenance cost, high reliability, wide wind operation range, self-starting capability at low wind speed, limited installation space, reduced dependence on grid-connected power and long transmission lines, low capital costs, as well as the possibility to be installed in some urban settings. However, there are significant challenges and drawbacks associated with this technology from many different perspectives, including the significant discrepancy between theoretical performance data provided by the manufacturers and real field operation, that need to be investigated in greater depth in order to enable a more widespread deployment of small-scale wind turbines. In this review, a complete and updated list of more than 200 commercially available small-scale horizontal and vertical wind turbine models is provided and analysed, detailing the corresponding characteristics in terms of the number and material of blades, start-up wind speed, cut-in wind speed, cut-out wind speed, survival wind speed, maximum power, noise level, rotor diameter, turbine length, tower height, and specific capital cost. In addition, several scientific papers focusing on the experimental assessment of field performance of commercially available small-scale horizontal and vertical wind turbines have been reviewed and the corresponding measured data have been compared with the rated performance derived from the manufacturers’ datasheets in order to underline the discrepancies. This review represents an opportunity for the scientific community to have a clear and up-to-date picture of small-scale horizontal as well as vertical wind turbines on the market today, with a precise summary of their geometric, performance, and economic characteristics, which can enable a more accurate and informed choice of the wind turbine to be used depending on the application. It also describes the differences between theoretical and in-situ performance, emphasizing the need for further experimental research and highlighting the direction in which future studies should be directed for more efficient design and use of building-integrated small-scale wind turbines.

Suggested Citation

  • Antonio Rosato & Achille Perrotta & Luigi Maffei, 2024. "Commercial Small-Scale Horizontal and Vertical Wind Turbines: A Comprehensive Review of Geometry, Materials, Costs and Performance," Energies, MDPI, vol. 17(13), pages 1-43, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3125-:d:1421733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Dworak & Andrzej Mrozik & Agata Korzelecka-Orkisz & Adam Tański & Krzysztof Formicki, 2023. "Energy Self-Sufficiency of a Salmonids Breeding Facility in the Recirculating Aquaculture System," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Weekes, S.M. & Tomlin, A.S. & Vosper, S.B. & Skea, A.K. & Gallani, M.L. & Standen, J.J., 2015. "Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure–correlate–predict," Renewable Energy, Elsevier, vol. 81(C), pages 760-769.
    3. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    4. Ying, P. & Chen, Y.K. & Xu, Y.G. & Tian, Y., 2015. "Computational and experimental investigations of an omni-flow wind turbine," Applied Energy, Elsevier, vol. 146(C), pages 74-83.
    5. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    6. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Wen-Tong & Muzammil, Wan Khairul & Ong, Hwai-Chyuan & Sopian, Kamaruzzaman & Gwani, Mohammed & Fazlizan, Ahmad & Poh, Sin-Chew, 2019. "Performance analysis of the deflector integrated cross axis wind turbine," Renewable Energy, Elsevier, vol. 138(C), pages 675-690.
    2. Toni Pujol & Albert Massaguer & Eduard Massaguer & Lino Montoro & Martí Comamala, 2018. "Net Power Coefficient of Vertical and Horizontal Wind Turbines with Crossflow Runners," Energies, MDPI, vol. 11(1), pages 1-24, January.
    3. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    4. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    5. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    6. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Aliashim Albani & Mohd Zamri Ibrahim & Kim Hwang Yong, 2018. "Influence of the ENSO and Monsoonal Season on Long-Term Wind Energy Potential in Malaysia," Energies, MDPI, vol. 11(11), pages 1-18, November.
    8. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    9. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    10. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    11. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    12. Elshafei, Basem & Peña, Alfredo & Popov, Atanas & Giddings, Donald & Ren, Jie & Xu, Dong & Mao, Xuerui, 2023. "Offshore wind resource assessment based on scarce spatio-temporal measurements using matrix factorization," Renewable Energy, Elsevier, vol. 202(C), pages 1215-1225.
    13. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    14. Romanic, Djordje & Parvu, Dan & Refan, Maryam & Hangan, Horia, 2018. "Wind and tornado climatologies and wind resource modelling for a modern development situated in “Tornado Alley”," Renewable Energy, Elsevier, vol. 115(C), pages 97-112.
    15. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    16. Yoshihide Tominaga, 2023. "CFD Prediction for Wind Power Generation by a Small Vertical Axis Wind Turbine: A Case Study for a University Campus," Energies, MDPI, vol. 16(13), pages 1-19, June.
    17. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    18. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    19. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    20. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3125-:d:1421733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.