IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3098-d1420687.html
   My bibliography  Save this article

Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems

Author

Listed:
  • Leon Sander

    (Department of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, D-79085 Freiburg, Germany)

  • Christopher Jung

    (Department of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, D-79085 Freiburg, Germany)

  • Dirk Schindler

    (Department of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, D-79085 Freiburg, Germany)

Abstract

Deploying onshore wind energy as a cornerstone of future global energy systems challenges societies and decision-makers worldwide. Expanding wind energy should contribute to a more sustainable electricity generation without harnessing humans and their environment. Opponents often highlight the negative environmental impacts of wind energy to impede its expansion. This study reviews 152 studies to synthesize, summarize, and discuss critically the current knowledge, research gaps, and mitigation strategies on the environmental impacts of onshore wind energy. The investigated effects comprise impacts on the abiotic and biotic environment, with birds and bats in particular, noise and visual impacts. Effects are discussed in the context of social acceptance, other energy technologies, and wind energy expansion in forests. This review illustrates that many effects are highly case-specific and must be more generalizable. Studies are biased regarding the research focus and areas, needing more standardized research methods and long-term measurements. Most studies focus on the direct mortality of birds and bats at wind farms and are concentrated in Europe and North America. Knowledge gaps persist for many impact categories, and the efficacy of mitigation strategies has yet to be proven. More targeted, unbiased research is required that allows for an objective evaluation of the environmental impacts of wind energy and strategies to mitigate them. Impacts, such as those on biodiversity, need to be addressed in the context of other anthropogenic influences and the benefits of wind energy. This forms the basis for a socially acceptable, efficient, and sustainable expansion of wind energy.

Suggested Citation

  • Leon Sander & Christopher Jung & Dirk Schindler, 2024. "Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems," Energies, MDPI, vol. 17(13), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3098-:d:1420687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    2. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    3. Sascha D Wellig & Sébastien Nusslé & Daniela Miltner & Oliver Kohle & Olivier Glaizot & Veronika Braunisch & Martin K Obrist & Raphaël Arlettaz, 2018. "Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    4. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    5. Sklenicka, Petr & Zouhar, Jan, 2018. "Predicting the visual impact of onshore wind farms via landscape indices: A method for objectivizing planning and decision processes," Applied Energy, Elsevier, vol. 209(C), pages 445-454.
    6. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung, 2024. "Recent Development and Future Perspective of Wind Power Generation," Energies, MDPI, vol. 17(21), pages 1-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    2. Skenteris, Konstantinos & Mirasgedis, Sevastianos & Tourkolias, Christos, 2019. "Implementing hedonic pricing models for valuing the visual impact of wind farms in Greece," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 248-258.
    3. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    4. Alphan, Hakan, 2024. "Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment," Applied Energy, Elsevier, vol. 353(PB).
    5. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    6. Yang Shen & Xiuwu Zhang, 2022. "Study on the Impact of Environmental Tax on Industrial Green Transformation," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    7. Maren Helen Meyer & Sandra Dullau & Pascal Scholz & Markus Andreas Meyer & Sabine Tischew, 2023. "Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks," Land, MDPI, vol. 12(6), pages 1-16, June.
    8. Lida Liao & Bin Huang & Qi Tan & Kan Huang & Mei Ma & Kang Zhang, 2020. "Development of an Improved LMD Method for the Low-Frequency Elements Extraction from Turbine Noise Background," Energies, MDPI, vol. 13(4), pages 1-17, February.
    9. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    10. Li, Shoutu & Chen, Qin & Li, Ye & Pröbsting, Stefan & Yang, Congxin & Zheng, Xiaobo & Yang, Yannian & Zhu, Weijun & Shen, Wenzhong & Wu, Faming & Li, Deshun & Wang, Tongguang & Ke, Shitang, 2022. "Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments," Renewable Energy, Elsevier, vol. 200(C), pages 970-982.
    11. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    12. Suling Guo & Wei Sun & Wen Chen & Jianxin Zhang & Peixue Liu, 2021. "Impact of Artificial Elements on Mountain Landscape Perception: An Eye-Tracking Study," Land, MDPI, vol. 10(10), pages 1-18, October.
    13. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    15. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    16. Ren, He & Liu, Wenyi & Shan, Mengchen & Wang, Xin & Wang, Zhengfeng, 2021. "A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation," Renewable Energy, Elsevier, vol. 168(C), pages 972-980.
    17. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    19. Fernando Lezama & Ricardo Faia & Pedro Faria & Zita Vale, 2020. "Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms," Energies, MDPI, vol. 13(10), pages 1-18, May.
    20. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3098-:d:1420687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.