IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3078-d1419898.html
   My bibliography  Save this article

Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection

Author

Listed:
  • Ahmed Faris Amiri

    (Laboratory of Electrical Engineering (LGE), Electronic Department, University of M’sila, P.O. Box 166 Ichebilia, M’sila 28000, Algeria
    Laboratory of Signal and System Analysis (LASS), Electronic Department, University of M’sila, P.O. Box 1667 Ichebilia, M’sila 28000, Algeria)

  • Aissa Chouder

    (Laboratory of Electrical Engineering (LGE), Electronic Department, University of M’sila, P.O. Box 166 Ichebilia, M’sila 28000, Algeria)

  • Houcine Oudira

    (Laboratory of Electrical Engineering (LGE), Electronic Department, University of M’sila, P.O. Box 166 Ichebilia, M’sila 28000, Algeria)

  • Santiago Silvestre

    (Department of Electronic Engineering, Universitat Politècnica de Catalunya (UPC), Mòdul C5 Campus Nord UPC, Jordi Girona 1-3, 08034 Barcelona, Spain)

  • Sofiane Kichou

    (University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 1024 Třinecká St., 27343 Buštěhrad, Czech Republic)

Abstract

This work identifies the most effective machine learning techniques and supervised learning models to estimate power output from photovoltaic (PV) plants precisely. The performance of various regression models is analyzed by harnessing experimental data, including Random Forest regressor, Support Vector regression (SVR), Multi-layer Perceptron regressor (MLP), Linear regressor (LR), Gradient Boosting, k-Nearest Neighbors regressor (KNN), Ridge regressor (Rr), Lasso regressor (Lsr), Polynomial regressor (Plr) and XGBoost regressor (XGB). The methodology applied starts with meticulous data preprocessing steps to ensure dataset integrity. Following the preprocessing phase, which entails eliminating missing values and outliers using Isolation Feature selection based on a correlation threshold is performed to identify relevant parameters for accurate prediction in PV systems. Subsequently, Isolation Forest is employed for outlier detection, followed by model training and evaluation using key performance metrics such as Root-Mean-Squared Error (RMSE), Normalized Root-Mean-Squared Error (NRMSE), Mean Absolute Error (MAE), and R-squared (R 2 ), Integral Absolute Error (IAE), and Standard Deviation of the Difference (SDD). Among the models evaluated, Random Forest emerges as the top performer, highlighting promising results with an RMSE of 19.413, NRMSE of 0.048%, and an R 2 score of 0.968. Furthermore, the Random Forest regressor (the best-performing model) is integrated into a MATLAB application for real-time predictions, enhancing its usability and accessibility for a wide range of applications in renewable energy.

Suggested Citation

  • Ahmed Faris Amiri & Aissa Chouder & Houcine Oudira & Santiago Silvestre & Sofiane Kichou, 2024. "Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection," Energies, MDPI, vol. 17(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3078-:d:1419898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismail Shah & Hasnain Iftikhar & Sajid Ali & Wendong Yang, 2022. "Modeling and Forecasting Electricity Demand and Prices: A Comparison of Alternative Approaches," Journal of Mathematics, Hindawi, vol. 2022, pages 1-14, July.
    2. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    3. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    4. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Ismail Shah & Faheem Jan & Sajid Ali & Tahir Mehmood, 2022. "Functional Data Approach for Short-Term Electricity Demand Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
    2. Mohamed Trabelsi & Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Shady S. Refaat & Tingwen Huang & Fakhreddine S. Oueslati, 2022. "An Effective Hybrid Symbolic Regression–Deep Multilayer Perceptron Technique for PV Power Forecasting," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    5. Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
    6. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    7. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    8. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    9. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    10. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    11. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    12. Ian B. Benitez & Jessa A. Ibañez & Cenon III D. Lumabad & Jayson M. Cañete & Jeark A. Principe, 2023. "Day-Ahead Hourly Solar Photovoltaic Output Forecasting Using SARIMAX, Long Short-Term Memory, and Extreme Gradient Boosting: Case of the Philippines," Energies, MDPI, vol. 16(23), pages 1-21, November.
    13. Yuhao Zhang & Ting Li & Tianyi Ma & Dongsheng Yang & Xiaolong Sun, 2024. "Short-Term Photovoltaic Power Prediction Based on Extreme Learning Machine with Improved Dung Beetle Optimization Algorithm," Energies, MDPI, vol. 17(4), pages 1-24, February.
    14. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    15. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    16. Wang, Min & Rao, Congjun & Xiao, Xinping & Hu, Zhuo & Goh, Mark, 2024. "Efficient shrinkage temporal convolutional network model for photovoltaic power prediction," Energy, Elsevier, vol. 297(C).
    17. Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
    18. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    19. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    20. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3078-:d:1419898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.