IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p3056-d1419197.html
   My bibliography  Save this article

Technical Feasibility Study of Orange Wood Residues ( Citrus sinensis ) for Bioenergy Generation

Author

Listed:
  • Luciano C. Dias

    (Forest and Wood Sciences Department, Federal University of Espírito Santo, Jeronimo Monteiro 29550-000, Brazil)

  • Damaris Guimarães

    (Chemistry and Physics Department, Federal University of Espírito Santo, Alto Universitário, sn., Alegre 29500-000, Brazil)

  • Ananias F. Dias Júnior

    (Forest and Wood Sciences Department, Federal University of Espírito Santo, Jeronimo Monteiro 29550-000, Brazil)

  • Michel P. Oliveira

    (Forest and Wood Sciences Department, Federal University of Espírito Santo, Jeronimo Monteiro 29550-000, Brazil)

Abstract

The production of orange ( Citrus sinensis ) generates many residues, and the few that are used are usually by-products of the fruit juice processing industry. Among the residues, wood is potentially advantageous for use in bioenergy, but with few records in the literature. In this sense, this study sought to evaluate the feasibility of using orange wood for energy purposes by performing chemical characterization, immediate analysis, FTIR, calorific value, thermogravimetry and bulk and energetic densities for three compositions: 100% trunk (100T), 90% trunk + 10% bark (90T10B) and 100% bark (100B). 100T showed a higher fixed carbon content (16.76%) and equality with 90T10B in lignin, holocellulose, useful calorific value and volatile materials. 100B presented higher extractives and ash contents of 19.67% and 10.35%, respectively. The FTIR spectra and thermogravimetric curves were similar in 100T and 90T10B. 100B showed more stages of degradation and a higher incidence of peaks in the range 780–612 cm −1 . The bulk density was equal in 100T and 90T10B, but the energy density was higher in 100T (6.16 Gj.m −3 ). 100T and 90T10B are good options for bioenergy and the chemical composition and thermal degradation of 100B point to new investigations in this composition.

Suggested Citation

  • Luciano C. Dias & Damaris Guimarães & Ananias F. Dias Júnior & Michel P. Oliveira, 2024. "Technical Feasibility Study of Orange Wood Residues ( Citrus sinensis ) for Bioenergy Generation," Energies, MDPI, vol. 17(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3056-:d:1419197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/3056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/3056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.
    2. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Krzysztof Dziedzic & Bogusława Łapczyńska-Kordon & Michał Jurczyk & Marek Wróbel & Marcin Jewiarz & Krzysztof Mudryk & Tadeusz Pająk, 2022. "Solid Digestate—Mathematical Modeling of Combustion Process," Energies, MDPI, vol. 15(12), pages 1-22, June.
    4. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    5. Marzena Niemczyk & Margalita Bachilava & Marek Wróbel & Marcin Jewiarz & Giorgi Kavtaradze & Nani Goginashvili, 2021. "Productivity and Biomass Properties of Poplar Clones Managed in Short-Rotation Culture as a Potential Fuelwood Source in Georgia," Energies, MDPI, vol. 14(11), pages 1-18, May.
    6. Guo, Ying & Yu, Yan & Wan, Zhangmin & Sokhansanj, Shahabaddine & El-Kassaby, Yousry A. & Wang, Guibin, 2022. "Evaluation of the potential of pelletized enzyme-treated Ginkgo leaf residues for use as a solid fuel," Renewable Energy, Elsevier, vol. 201(P1), pages 305-313.
    7. Marek Wieruszewski & Aleksandra Górna & Zygmunt Stanula & Krzysztof Adamowicz, 2022. "Energy Use of Woody Biomass in Poland: Its Resources and Harvesting Form," Energies, MDPI, vol. 15(18), pages 1-21, September.
    8. Leni Maulinda & Husni Husin & Nasrul Arahman & Cut Meurah Rosnelly & Muhammad Syukri & Nurhazanah & Fahrizal Nasution & Ahmadi, 2023. "The Influence of Pyrolysis Time and Temperature on the Composition and Properties of Bio-Oil Prepared from Tanjong Leaves ( Mimusops elengi )," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    9. Maja Ivanovski & Darko Goričanec & Danijela Urbancl, 2023. "The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3056-:d:1419197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.