IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2558-d1401624.html
   My bibliography  Save this article

Equivalent Thermal Conductivity of Topology-Optimized Composite Structure for Three Typical Conductive Heat Transfer Models

Author

Listed:
  • Biwang Lu

    (School of Materials Science and Engineering, Baise University, Baise 533000, China)

  • Jing He

    (School of Physics and Electronics, Nanning Normal University, Nanning 530100, China)

Abstract

Composite materials and structural optimization are important research topics in heat transfer enhancement. The current evaluation parameter for the conductive heat transfer capability of composites is effective thermal conductivity (ETC); however, this parameter has not been studied or analyzed for its applicability to different heat transfer models and composite structures. In addition, the optimized composite structures of a specific object will vary when different optimization methods and criteria are employed. Therefore, it is necessary to investigate a suitable method and parameter for evaluating the heat transfer capability of optimized composites under different heat transfer models. Therefore, this study analyzes and summarizes three typical conductive heat transfer models: surface-to-surface (S-to-S), volume-to-surface (V-to-S), and volume-to-volume (V-to-V) models. The equivalent thermal conductivity ( k eq ) is proposed to evaluate the conductive heat transfer capability of topology-optimized composite structures under the three models. A validated simulation method is used to obtain the key parameters for calculating k eq . The influences of the interfacial thermal resistance and size effect on k eq are considered. The results show that the composite structure optimized for the V-to-S and V-to-V models has a k eq value of only 79.4 W m −1 K −1 under the S-to-S model. However, the k eq values are 233.4 W m −1 K −1 and 240.3 W m −1 K −1 under the V-to-S and V-to-V models, respectively, which are approximately 41% greater than those of the in-parallel structure. It can be demonstrated that k eq is more suitable than the ETC for evaluating the V-to-S and V-to-V heat transfer capabilities of composite structures. The proposed k eq can serve as a characteristic parameter that is beneficial for heat transfer analysis and composite structural optimization.

Suggested Citation

  • Biwang Lu & Jing He, 2024. "Equivalent Thermal Conductivity of Topology-Optimized Composite Structure for Three Typical Conductive Heat Transfer Models," Energies, MDPI, vol. 17(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2558-:d:1401624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ziwei & Yang, Yi & Gariboldi, Elisabetta & Li, Yanwen, 2023. "Computational models of effective thermal conductivity for periodic porous media for all volume fractions and conductivity ratios," Applied Energy, Elsevier, vol. 349(C).
    2. Bangqi Chen & Ankang Kan & Zhaofeng Chen & Jiaxiang Zhang & Lixia Yang, 2023. "Investigation on Effective Thermal Conductivity of Fibrous Porous Materials as Vacuum Insulation Panels’ Core Using Lattice Boltzmann Method," Energies, MDPI, vol. 16(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2558-:d:1401624. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.