IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2436-d1398034.html
   My bibliography  Save this article

Using Quality Function Deployment to Assess the Efficiency of Mini-Channel Heat Exchangers

Author

Listed:
  • Artur Piasecki

    (Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

  • Sylwia Hożejowska

    (Faculty of Management and Computer Modelling, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

  • Aneta Masternak-Janus

    (Faculty of Management and Computer Modelling, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

  • Magdalena Piasecka

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

This article addresses the design of a compact heat exchanger for the cooling of electronic systems. The Quality Function Deployment (QFD) method is used to identify crucial product features to improve device performance and key customer requirements. The QFD simplifies management processes, allowing modifications to device components, such as design parameters (dimensions and materials) and operating conditions (flow type and preferred temperature range). The study was applied to analyse the fundamental features of a compact heat exchanger, assessing their impact on enhancing heat transfer intensity during fluid flow through mini-channels. The thermal efficiency of the compact heat exchanger was tested experimentally. The results allow to verify the results obtained from the numerical simulations due to Simcenter STAR-CCM+. Consequently, the experimental part was reduced in favour of numerical simulations conducted using this commercial CFD software version 2020.2.1 Build 15.04.01. The numerical simulations performed with the aid of CFD showed increases in the heat transfer coefficient of up to 180% compared to the case treated as a reference. The application of the QFD matrix significantly reduces the time required to develop suitable design and material solutions and determine the operating parameters for the cooling of miniature electronic devices.

Suggested Citation

  • Artur Piasecki & Sylwia Hożejowska & Aneta Masternak-Janus & Magdalena Piasecka, 2024. "Using Quality Function Deployment to Assess the Efficiency of Mini-Channel Heat Exchangers," Energies, MDPI, vol. 17(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2436-:d:1398034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Piasecka & Artur Piasecki & Norbert Dadas, 2022. "Experimental Study and CFD Modeling of Fluid Flow and Heat Transfer Characteristics in a Mini-Channel Heat Sink Using Simcenter STAR-CCM+ Software," Energies, MDPI, vol. 15(2), pages 1-20, January.
    2. Malgorzata Kowalska & Magdalena Pazdzior & Anna Krzton-Maziopa, 2018. "Implementation of QFD method in quality analysis of confectionery products," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 439-447, February.
    3. Malgorzata Kowalska & Magdalena Pazdzior & Anna Krzton-Maziopa, 2018. "Erratum to: Implementation of QFD method in quality analysis of confectionery products," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 449-450, February.
    4. Magdalena Piasecka & Sylwia Hożejowska & Beata Maciejewska & Anna Pawińska, 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink," Energies, MDPI, vol. 14(7), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlin Shi & Qingjin Peng, 2023. "Conceptual design of product structures based on WordNet hierarchy and association relation," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2655-2671, August.
    2. Hamid Reza Fazeli & Qingjin Peng, 2023. "Integrated approaches of BWM-QFD and FUCOM-QFD for improving weighting solution of design matrix," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1003-1020, March.
    3. Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
    4. Magdalena Piasecka & Sylwia Hożejowska & Anna Pawińska & Dariusz Strąk, 2022. "Heat Transfer Analysis of a Co-Current Heat Exchanger with Two Rectangular Mini-Channels," Energies, MDPI, vol. 15(4), pages 1-19, February.
    5. Nanyi Wang & Chang Shi & Xinhui Kang, 2022. "Design of a Disinfection and Epidemic Prevention Robot Based on Fuzzy QFD and the ARIZ Algorithm," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    6. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    7. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    8. Magdalena Piasecka & Beata Maciejewska & Artur Piasecki, 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements," Energies, MDPI, vol. 16(3), pages 1-19, January.
    9. Tomasz Janusz Teleszewski & Leszek Hożejowski, 2024. "Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant," Sustainability, MDPI, vol. 16(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2436-:d:1398034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.