IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p25-d1303703.html
   My bibliography  Save this article

Efficient Microgrid Management with Meerkat Optimization for Energy Storage, Renewables, Hydrogen Storage, Demand Response, and EV Charging

Author

Listed:
  • Hossein Jokar

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran)

  • Taher Niknam

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran)

  • Moslem Dehghani

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran)

  • Ehsan Sheybani

    (School of Information Systems and Management, Muma College of Business, University of South Florida, Tampa, FL 33620, USA)

  • Motahareh Pourbehzadi

    (School of Information Systems and Management, Muma College of Business, University of South Florida, Tampa, FL 33620, USA)

  • Giti Javidi

    (School of Information Systems and Management, Muma College of Business, University of South Florida, Tampa, FL 33620, USA)

Abstract

Within microgrids (MGs), the integration of renewable energy resources (RERs), plug-in hybrid electric vehicles (PHEVs), combined heat and power (CHP) systems, demand response (DR) initiatives, and energy storage solutions poses intricate scheduling challenges. Coordinating these diverse components is pivotal for optimizing MG performance. This study presents an innovative stochastic framework to streamline energy management in MGs, covering proton exchange membrane fuel cell–CHP (PEMFC-CHP) units, RERs, PHEVs, and various storage methods. To tackle uncertainties in PHEV and RER models, we employ the robust Monte Carlo Simulation (MCS) technique. Challenges related to hydrogen storage strategies in PEMFC-CHP units are addressed through a customized mixed-integer nonlinear programming (MINLP) approach. The integration of intelligent charging protocols governing PHEV charging dynamics is emphasized. Our primary goal centers on maximizing market profits, serving as the foundation for our optimization endeavors. At the heart of our approach is the Meerkat Optimization Algorithm (MOA), unraveling optimal MG operation amidst the intermittent nature of uncertain parameters. To amplify its exploratory capabilities and expedite global optima discovery, we enhance the MOA algorithm. The revised summary commences by outlining the overall goal and core algorithm, followed by a detailed explanation of optimization points for each MG component. Rigorous validation is executed using a conventional test system across diverse planning horizons. A comprehensive comparative analysis spanning varied scenarios establishes our proposed method as a benchmark against existing alternatives.

Suggested Citation

  • Hossein Jokar & Taher Niknam & Moslem Dehghani & Ehsan Sheybani & Motahareh Pourbehzadi & Giti Javidi, 2023. "Efficient Microgrid Management with Meerkat Optimization for Energy Storage, Renewables, Hydrogen Storage, Demand Response, and EV Charging," Energies, MDPI, vol. 17(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:25-:d:1303703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    2. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    2. Laws, Nicholas D. & Anderson, Kate & DiOrio, Nicholas A. & Li, Xiangkun & McLaren, Joyce, 2018. "Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings," Renewable Energy, Elsevier, vol. 127(C), pages 896-909.
    3. Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
    4. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    5. Iraj Faraji Davoudkhani & Farhad Zishan & Saeedeh Mansouri & Farzad Abdollahpour & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2023. "Allocation of Renewable Energy Resources in Distribution Systems While Considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm," Energies, MDPI, vol. 16(1), pages 1-17, January.
    6. Jorge Sousa & Inês Azevedo & Cristina Camus & Luís Mendes & Carla Viveiros & Filipe Barata, 2024. "Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry," Energies, MDPI, vol. 17(15), pages 1-15, July.
    7. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.
    8. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    9. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    10. Gustavo Leite Gonçalves & Raphael Abrahão & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2022. "Economic Feasibility of Conventional and Building-Integrated Photovoltaics Implementation in Brazil," Energies, MDPI, vol. 15(18), pages 1-16, September.
    11. Zhang, Jinliang & Liu, Ziyi, 2024. "Low carbon economic scheduling model for a park integrated energy system considering integrated demand response, ladder-type carbon trading and fine utilization of hydrogen," Energy, Elsevier, vol. 290(C).
    12. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    13. Yu Ji & Xiaogang Hou & Lingfeng Kou & Ming Wu & Ying Zhang & Xiong Xiong & Baodi Ding & Ping Xue & Junlong Li & Yue Xiang, 2019. "Cost–Benefit Analysis of Energy Storage in Distribution Networks," Energies, MDPI, vol. 12(17), pages 1-23, September.
    14. Zhang, Mingming & Nie, Jinchen & Su, Bin & Liu, Liyun, 2024. "An option game model applicable to multi-agent cooperation investment in energy storage projects," Energy Economics, Elsevier, vol. 131(C).
    15. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2019. "An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids," Renewable Energy, Elsevier, vol. 130(C), pages 1049-1066.
    16. Firouzi, Afshin & Meshkani, Ali, 2021. "Risk-based optimization of the debt service schedule in renewable energy project finance," Utilities Policy, Elsevier, vol. 70(C).
    17. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    18. Gao, Jianwei & Meng, Qichen & Liu, Jiangtao & Wang, Ziying, 2024. "Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading," Renewable Energy, Elsevier, vol. 221(C).
    19. Yunqi Xiao & Yi Wang & Yanping Sun, 2018. "Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses," Energies, MDPI, vol. 11(11), pages 1-15, November.
    20. Zhang, Xiaoshun & Chen, Yixuan & Yu, Tao & Yang, Bo & Qu, Kaiping & Mao, Senmao, 2017. "Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems," Applied Energy, Elsevier, vol. 189(C), pages 157-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:25-:d:1303703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.