IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p133-d1307735.html
   My bibliography  Save this article

Technoeconomic Analysis of Torrefaction and Steam Explosion Pretreatment Prior to Pelletization of Selected Biomass

Author

Listed:
  • Chukwuka Onyenwoke

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Lope G. Tabil

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Tim Dumonceaux

    (Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada)

  • Edmund Mupondwa

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
    Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada)

  • Duncan Cree

    (Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Xue Li

    (Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada)

  • Onu Onu Olughu

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

Abstract

Lignocellulosic biomass has demonstrated great potential as feedstock for pellet production, notwithstanding the fact that the industrial production of pellets is faced with some economic challenges. This study presents a technoeconomic analysis of six scenarios to develop a process model for pellet production from sawdust and oat straw that employs torrefaction and steam explosion pretreatment prior to pelletization. SuperPro Designer was used to carry out this evaluation. The pellet plants were designed to have a capacity of 9.09 t/h of sawdust and oat straw each. The pellet yield ranged from 59 kt to 72 kt/year. The scenarios analyzed included variations of steam explosion and torrefaction. In some scenarios, materials were lost in the form of liquid and gas due to the pretreatment process. The breakdown of equipment purchase cost showed that the torrefaction reactor is the most expensive unit with approximately 51% of the purchase cost. Facility-dependent and feedstock costs were the major significant contributors to the pellet production cost. The minimum selling prices of the pellets obtained from Scenarios 1–6 were $113.4/t, $118.7/t, $283.4/t, $298.7/t, $200.5/t, and $208.4/t, respectively. The profitability of pellet production as determined by the net present value ( NPV ), internal rate of return (IRR), and payback period was found to be sensitive to variations in feedstock cost.

Suggested Citation

  • Chukwuka Onyenwoke & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree & Xue Li & Onu Onu Olughu, 2023. "Technoeconomic Analysis of Torrefaction and Steam Explosion Pretreatment Prior to Pelletization of Selected Biomass," Energies, MDPI, vol. 17(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:133-:d:1307735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dassanayake, Geekiyanage Disela Malinga & Kumar, Amit, 2012. "Techno-economic assessment of triticale straw for power generation," Applied Energy, Elsevier, vol. 98(C), pages 236-245.
    2. Peyman Alizadeh & Lope G. Tabil & Edmund Mupondwa & Xue Li & Duncan Cree, 2023. "Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Luk, Ho Ting & Lam, Tsz Ying Gene & Oyedun, Adetoyese Olajire & Gebreegziabher, Tesfaldet & Hui, Chi Wai, 2013. "Drying of biomass for power generation: A case study on power generation from empty fruit bunch," Energy, Elsevier, vol. 63(C), pages 205-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    2. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    3. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    4. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    6. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    7. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    8. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    9. Sastre, C.M. & González-Arechavala, Y. & Santos, A.M., 2015. "Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability," Applied Energy, Elsevier, vol. 154(C), pages 900-911.
    10. Yue, Chen & Wang, Bin & Zhu, Bangshou, 2017. "Investigation on the exhaust heat marine products drying integrated to a bottom sea water desalinization cycle," Energy, Elsevier, vol. 141(C), pages 1905-1913.
    11. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    12. Song, Qingbin & Wang, Zhishi & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Liu, Gang, 2018. "Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2450-2459.
    13. Rodrigues Silveira, Andrei Rei & Nadaleti, Willian Cézar & Przybyla, Grzegorz & Belli Filho, Paulo, 2019. "Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy," Renewable Energy, Elsevier, vol. 134(C), pages 1003-1016.
    14. Nguyen Van Song & Thai Van Ha & Tran Duc Thuan & Nguyen Van Hanh & Dinh Van Tien & Nguyen Cong Tiep & Nguyen Thi Minh Phuong & Phan Anh Tu & Tran Ba Uan, 2021. "Development of Rice Husk Power Plants Based on Clean Development Mechanism: A Case Study in Mekong River Delta, Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-10, June.
    15. Park, Jeong-Woo & Heo, Juheon & Ly, Hoang Vu & Kim, Jinsoo & Lim, Hankwon & Kim, Seung-Soo, 2019. "Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor," Energy, Elsevier, vol. 179(C), pages 517-527.
    16. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    17. Peyman Alizadeh & Lope G. Tabil & Edmund Mupondwa & Xue Li & Duncan Cree, 2023. "Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust," Energies, MDPI, vol. 16(4), pages 1-18, February.
    18. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    19. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    20. Rahdar, Mohammad & Wang, Lizhi & Hu, Guiping, 2014. "Potential competition for biomass between biopower and biofuel under RPS and RFS2," Applied Energy, Elsevier, vol. 119(C), pages 10-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:133-:d:1307735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.