IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3897-d1139543.html
   My bibliography  Save this article

FastInformer-HEMS: A Lightweight Optimization Algorithm for Home Energy Management Systems

Author

Listed:
  • Xihui Chen

    (Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dejun Ning

    (Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China)

Abstract

In a smart home with distributed energy resources, the home energy management system (HEMS) controls the photovoltaic (PV) storage system by executing the optimization algorithm to achieve the lowest power cost. The existing mixed integer linear programming (MILP) algorithm is not suitable for execution on the end-user side due to its high computational complexity. The HEMS algorithm based on a long short-term memory neural network (LSTM-HEMS) can effectively solve the problem of the high computational complexity of MILP, but its optimization outcome is not high due to the accumulation of prediction errors. In order to achieve a better balance between computational complexity and optimization outcome, this paper proposes a lightweight optimization algorithm called the FastInformer-HEMS, which introduces the E-Attn attention mechanism based on Informer and uses global average pooling to extract the attention characteristics. Meanwhile, the proposed method introduces the maximum self-consumption algorithm as a backup strategy to ensure the safe operation of the system. The simulated results show that the computational complexity of the proposed FastInformer-HEMS is the lowest among the existing algorithms. Compared with the existing LSTM-HEMS, the proposed algorithm reduces the power consumption cost by 12.3% and 6.6% in the two typical scenarios, while the execution time decreases by 13.6 times.

Suggested Citation

  • Xihui Chen & Dejun Ning, 2023. "FastInformer-HEMS: A Lightweight Optimization Algorithm for Home Energy Management Systems," Energies, MDPI, vol. 16(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3897-:d:1139543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    2. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    2. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    3. Zhou, Xinlei & Xue, Shan & Du, Han & Ma, Zhenjun, 2023. "Optimization of building demand flexibility using reinforcement learning and rule-based expert systems," Applied Energy, Elsevier, vol. 350(C).
    4. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    5. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    6. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    7. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    8. Steffen Limmer & Nils Einecke, 2022. "An Efficient Approach for Peak-Load-Aware Scheduling of Energy-Intensive Tasks in the Context of a Public IEEE Challenge," Energies, MDPI, vol. 15(10), pages 1-23, May.
    9. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    10. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    11. Nadeem Javaid & Sardar Mehboob Hussain & Ibrar Ullah & Muhammad Asim Noor & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "Demand Side Management in Nearly Zero Energy Buildings Using Heuristic Optimizations," Energies, MDPI, vol. 10(8), pages 1-29, August.
    12. Godiana Hagile Philipo & Josephine Nakato Kakande & Stefan Krauter, 2022. "Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery Microgrid Using Load-Shifting and Peak-Clipping," Energies, MDPI, vol. 15(14), pages 1-18, July.
    13. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
    14. Doğukan Aycı & Ferhat Öğüt & Ulaş Özen & Bora Batuhan İşgör & Sinan Küfeoğlu, 2021. "Energy Optimisation Models for Self-Sufficiency of a Typical Turkish Residential Electricity Customer of the Future," Energies, MDPI, vol. 14(19), pages 1-24, September.
    15. Wang, Bo & Wang, Jianda & Dong, Kangyin & Dong, Xiucheng, 2023. "Is the digital economy conducive to the development of renewable energy in Asia?," Energy Policy, Elsevier, vol. 173(C).
    16. Dinh, Huy Truong & Lee, Kyu-haeng & Kim, Daehee, 2022. "Supervised-learning-based hour-ahead demand response for a behavior-based home energy management system approximating MILP optimization," Applied Energy, Elsevier, vol. 321(C).
    17. Priyadharshini Ramu & Sivasankar Gangatharan & Sankar Rangasamy & Lucian Mihet-Popa, 2023. "Categorization of Loads in Educational Institutions to Effectively Manage Peak Demand and Minimize Energy Cost Using an Intelligent Load Management Technique," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    18. Zaid A. Al Muala & Mohammad A. Bany Issa & Daniel Sansó-Rubert Pascual & Pastora M. Bello Bugallo, 2023. "Realistic Home Energy Management System Considering the Life Cycle of Photovoltaic and Energy Storage Systems," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    19. Bilal Hussain & Nadeem Javaid & Qadeer Ul Hasan & Sakeena Javaid & Asif Khan & Shahzad A. Malik, 2018. "An Inventive Method for Eco-Efficient Operation of Home Energy Management Systems," Energies, MDPI, vol. 11(11), pages 1-40, November.
    20. Minkyu Kim & Chankook Park, 2021. "Academic Topics Related to Household Energy Consumption Using the Future Sign Detection Technique," Energies, MDPI, vol. 14(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3897-:d:1139543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.