IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3897-d1139543.html
   My bibliography  Save this article

FastInformer-HEMS: A Lightweight Optimization Algorithm for Home Energy Management Systems

Author

Listed:
  • Xihui Chen

    (Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dejun Ning

    (Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China)

Abstract

In a smart home with distributed energy resources, the home energy management system (HEMS) controls the photovoltaic (PV) storage system by executing the optimization algorithm to achieve the lowest power cost. The existing mixed integer linear programming (MILP) algorithm is not suitable for execution on the end-user side due to its high computational complexity. The HEMS algorithm based on a long short-term memory neural network (LSTM-HEMS) can effectively solve the problem of the high computational complexity of MILP, but its optimization outcome is not high due to the accumulation of prediction errors. In order to achieve a better balance between computational complexity and optimization outcome, this paper proposes a lightweight optimization algorithm called the FastInformer-HEMS, which introduces the E-Attn attention mechanism based on Informer and uses global average pooling to extract the attention characteristics. Meanwhile, the proposed method introduces the maximum self-consumption algorithm as a backup strategy to ensure the safe operation of the system. The simulated results show that the computational complexity of the proposed FastInformer-HEMS is the lowest among the existing algorithms. Compared with the existing LSTM-HEMS, the proposed algorithm reduces the power consumption cost by 12.3% and 6.6% in the two typical scenarios, while the execution time decreases by 13.6 times.

Suggested Citation

  • Xihui Chen & Dejun Ning, 2023. "FastInformer-HEMS: A Lightweight Optimization Algorithm for Home Energy Management Systems," Energies, MDPI, vol. 16(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3897-:d:1139543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    2. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    2. Tamara Schröter & André Richter & Jens Götze & André Naumann & Jenny Gronau & Martin Wolter, 2020. "Substation Related Forecasts of Electrical Energy Storage Systems: Transmission System Operator Requirements," Energies, MDPI, vol. 13(23), pages 1-26, November.
    3. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    4. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    5. Abu Bakar Siddique & Hossam A. Gabbar, 2023. "Adaptive Mixed-Integer Linear Programming-Based Energy Management System of Fast Charging Station with Nuclear–Renewable Hybrid Energy System," Energies, MDPI, vol. 16(2), pages 1-22, January.
    6. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    7. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    8. Zhou, Xinlei & Xue, Shan & Du, Han & Ma, Zhenjun, 2023. "Optimization of building demand flexibility using reinforcement learning and rule-based expert systems," Applied Energy, Elsevier, vol. 350(C).
    9. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    10. Iraj Faraji Davoudkhani & Farhad Zishan & Saeedeh Mansouri & Farzad Abdollahpour & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2023. "Allocation of Renewable Energy Resources in Distribution Systems While Considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm," Energies, MDPI, vol. 16(1), pages 1-17, January.
    11. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    12. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    13. Felix Heider & Amra Jahic & Maik Plenz & Detlef Schulz, 2022. "Extended Residential Power Management Interface for Flexibility Communication and Uncertainty Reduction for Flexibility System Operators," Energies, MDPI, vol. 15(4), pages 1-23, February.
    14. Jing Wang & Kaitlyn Garifi & Kyri Baker & Wangda Zuo & Yingchen Zhang & Sen Huang & Draguna Vrabie, 2020. "Optimal Renewable Resource Allocation and Load Scheduling of Resilient Communities," Energies, MDPI, vol. 13(21), pages 1-29, October.
    15. Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    16. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    17. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    18. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    19. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Liao, Wei & Xiao, Fu & Li, Yanxue & Zhang, Hanbei & Peng, Jinqing, 2024. "A comparative study of demand-side energy management strategies for building integrated photovoltaics-battery and electric vehicles (EVs) in diversified building communities," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3897-:d:1139543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.