IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3845-d1136956.html
   My bibliography  Save this article

Impact of the Operation of Distribution Systems on the Resilience Assessment of Transmission Systems under Ice Disasters

Author

Listed:
  • Zhiwei Wang

    (State Grid Jilin Electric Power Co., Ltd., Changchun 130022, China)

  • Xiao Ma

    (Department of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Song Gao

    (State Grid Jilin Province Electric Research Institute, Changchun 130021, China)

  • Changjiang Wang

    (Department of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Shuguang Li

    (Department of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

Ice disasters, such as ice storms, can cause serious damage to power systems. To understand ice disasters’ influences on power systems, this paper introduces a resilience evaluation frame for transmission and distribution systems during ice disasters. First, we built a vulnerability model for transmission and distribution systems under ice disaster weather. Then, we established an optimal load power shedding model for transmission and distribution systems. After this, according to the vulnerability model and the optimal power load power shedding model, we generated the fault scenario set of a system in the influence of an ice disaster. According to the curve of system resilience, we propose two resilience evaluation indices of transmission and distribution systems under ice disaster weather. Finally, we verified the efficacy and rationalization of the established resilience evaluation framework with an example in which a transmission and distribution system is coupled with a six-bus transmission system and two distribution systems. This study highlights the necessity of resilience assessment of transmission and distribution systems during ice disasters.

Suggested Citation

  • Zhiwei Wang & Xiao Ma & Song Gao & Changjiang Wang & Shuguang Li, 2023. "Impact of the Operation of Distribution Systems on the Resilience Assessment of Transmission Systems under Ice Disasters," Energies, MDPI, vol. 16(9), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3845-:d:1136956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hou, Guangyang & Muraleetharan, Kanthasamy K. & Panchalogaranjan, Vinushika & Moses, Paul & Javid, Amir & Al-Dakheeli, Hussein & Bulut, Rifat & Campos, Richard & Harvey, P. Scott & Miller, Gerald & Bo, 2023. "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Jiazheng Lu & Jun Guo & Zhou Jian & Yihao Yang & Wenhu Tang, 2018. "Resilience Assessment and Its Enhancement in Tackling Adverse Impact of Ice Disasters for Power Transmission Systems," Energies, MDPI, vol. 11(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guolin Yang & Yi Liao & Xingliang Jiang & Xiangshuai Han & Jiangyi Ding & Yu Chen & Xingbo Han & Zhijin Zhang, 2022. "Research on Value-Seeking Calculation Method of Icing Environmental Parameters Based on Four Rotating Cylinders Array," Energies, MDPI, vol. 15(19), pages 1-17, October.
    2. Jun Guo & Tao Feng & Zelin Cai & Xianglong Lian & Wenhu Tang, 2020. "Vulnerability Assessment for Power Transmission Lines under Typhoon Weather Based on a Cascading Failure State Transition Diagram," Energies, MDPI, vol. 13(14), pages 1-15, July.
    3. Huaizhi Wang & Xian Zhang & Qing Li & Guibin Wang & Hui Jiang & Jianchun Peng, 2018. "Recursive Method for Distribution System Reliability Evaluation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    4. Caetano, Henrique O. & N., Luiz Desuó & Fogliatto, Matheus S.S. & Maciel, Carlos D., 2024. "Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Fayyazi, Saeed & Azad-Farsani, Ehsan & Haghighi, Ali Asghar, 2024. "Resilience-oriented sectionalizing and tie switches sitting in distribution networks with complex topologies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Oboudi, Mohammad Hossein & Mohammadi, Mohammad, 2024. "Two-Stage Seismic Resilience Enhancement of Electrical Distribution Systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Meng, Xiangrui & Tian, Li & Li, Chao & Liu, Juncai, 2024. "Copula-based wind-induced failure prediction of overhead transmission line considering multiple temperature factors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    10. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3845-:d:1136956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.