IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3834-d1136633.html
   My bibliography  Save this article

Windows of Opportunities: Orientation, Sizing and PV-Shading of the Glazed Area to Reduce Cooling Energy Demand in Sub-Sahara Africa

Author

Listed:
  • Alan Kabanshi

    (Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, 801 76 Gävle, Sweden)

  • Gasper Choonya

    (Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, 801 76 Gävle, Sweden)

  • Arman Ameen

    (Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, 801 76 Gävle, Sweden)

  • Wei Liu

    (Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

  • Enock Mulenga

    (Division of Energy Science-Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden)

Abstract

In hot climates, such as sub-Sahara Africa, window sizing and orientation pose challenges as they add, through solar insolation, to the building cooling energy demand and thus the cause of indoor overheating risk. This risk can be reduced through passive building-design-integrated measures, e.g., optimizing the window size, orientation and solar shading strategies. Through an IDA-ICE building performance simulation tool, the current study explores the impact of window size, optimization and building-integrated PV panels as shading strategies on cooling energy demands in three cities (Niamey, Nairobi and Harare) in sub-Sahara Africa. Results show that thermal comfort and cooling energy demand are sensitive to a window-to-wall ratio (WWR) > 70%, while the need for artificial lighting is negligible for a WWR > 50%, particularly in the north for cities in the Southern hemisphere and the south in the Northern hemisphere. A WWR > 70% in the east and west should be avoided unless shading devices are incorporated. Internal blinds perform better in improving occupant thermal comfort but increase artificial lighting while integrating PV panels, as external shading overhangs reduce cooling energy but also produce energy that can be utilized for building services, such as air conditioning. In this study, the results and implications of the optimization of window size, orientation and building-integrated shading and operation are discussed.

Suggested Citation

  • Alan Kabanshi & Gasper Choonya & Arman Ameen & Wei Liu & Enock Mulenga, 2023. "Windows of Opportunities: Orientation, Sizing and PV-Shading of the Glazed Area to Reduce Cooling Energy Demand in Sub-Sahara Africa," Energies, MDPI, vol. 16(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3834-:d:1136633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    2. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    3. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    4. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Wąs, 2024. "The Impact of the Location of a Passive Frame House on Its Energy Demand for the Purpose of Heating—A Case Study," Energies, MDPI, vol. 17(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Zhao & Xincheng Li & Xiangmei Li & Chenyang Ai, 2022. "Dynamic Changes and Regional Differences of Net Carbon Sequestration of Food Crops in the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    2. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    3. Touitou Mohammed, 2021. "Empirical Analysis of the Environmental Kuznets Curve for Economic Growth and CO2 Emissions in North African Countries," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(2), pages 67-77, June.
    4. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    5. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    6. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    7. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    8. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    9. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    10. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    11. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    12. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    13. Sy-Hoa Ho & Rim Oueghlissi & Riadh El Ferktaji, 2024. "Testing for Causality Between Economic Growth and Environmental, Social, and Governance Performance: New Evidence from a Global Sample," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7769-7787, June.
    14. Muhammad, Shahbaz & V G R, Chandran & Pervaiz, Azeem, 2011. "Natural gas consumption and economic growth: cointegration, causality and forecast error variance decomposition tests for Pakistan," MPRA Paper 35103, University Library of Munich, Germany, revised 30 Nov 2011.
    15. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    16. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    17. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    19. Karimkashi, Shervin & Amidpour, Majid, 2012. "Total site energy improvement using R-curve concept," Energy, Elsevier, vol. 40(1), pages 329-340.
    20. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3834-:d:1136633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.