IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3501-d1125849.html
   My bibliography  Save this article

An Online Control Method of Reactive Power and Voltage Based on Mechanism–Data Hybrid Drive Model Considering Source–Load Uncertainty

Author

Listed:
  • Xu Huang

    (Chengdong Power Supply Branch, State Grid Tianjin Electric Power Company, Tianjin 300250, China)

  • Guoqiang Zu

    (Chengdong Power Supply Branch, State Grid Tianjin Electric Power Company, Tianjin 300250, China)

  • Qi Ding

    (Chengdong Power Supply Branch, State Grid Tianjin Electric Power Company, Tianjin 300250, China)

  • Ran Wei

    (State Grid Tianjin Electric Power Company, Tianjin 300010, China)

  • Yudong Wang

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Wei Wei

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract

The uncertainty brought about by the high proportion of distributed generations poses great challenges to the operational safety of novel distribution systems. Therefore, this paper proposes an online reactive power and voltage control method that integrates source–load uncertainty and a mechanism–data hybrid drive (MDHD) model. Based on the concept of a mechanism and data hybrid drive, the mechanism-driven deterministic reactive power optimization strategy and the stochastic reactive power optimization strategy are used as training data. By training the data-driven CNN–GRU network model offline, the influence of source–load uncertainty on reactive power optimization can be effectively assessed. On this basis, according to the online source and load predicted data, the proposed hybrid-driven model can be applied to quickly obtain the reactive power optimization strategy to enable fast control of voltage. As observed in the case studies, compared with the traditional deterministic and stochastic reactive power optimization models, the hybrid-driven model not only satisfies the real-time requirement of online voltage control, but also has stronger adaptability to source–load uncertainty.

Suggested Citation

  • Xu Huang & Guoqiang Zu & Qi Ding & Ran Wei & Yudong Wang & Wei Wei, 2023. "An Online Control Method of Reactive Power and Voltage Based on Mechanism–Data Hybrid Drive Model Considering Source–Load Uncertainty," Energies, MDPI, vol. 16(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3501-:d:1125849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    2. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    3. Liu, Jing-Yue & Zhang, Yue-Jun, 2021. "Has carbon emissions trading system promoted non-fossil energy development in China?," Applied Energy, Elsevier, vol. 302(C).
    4. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    2. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    3. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
    4. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    5. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    6. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    7. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    9. Su, Chi Wei & Wei, Shenkai & Wang, Yan & Tao, Ran, 2024. "How does climate policy uncertainty affect the carbon market?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    10. Peng Li & Chen Zhang & Huan Long, 2019. "Solar Power Interval Prediction via Lower and Upper Bound Estimation with a New Model Initialization Approach," Energies, MDPI, vol. 12(21), pages 1-17, October.
    11. Wang, Wei & Zhang, Yue-Jun, 2022. "Does China's carbon emissions trading scheme affect the market power of high-carbon enterprises?," Energy Economics, Elsevier, vol. 108(C).
    12. Trapero, Juan R., 2016. "Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates," Energy, Elsevier, vol. 114(C), pages 266-274.
    13. Du, Mengfan & Zhang, Yue-Jun, 2023. "The impact of producer services agglomeration on green economic development: Evidence from 278 Chinese cities," Energy Economics, Elsevier, vol. 124(C).
    14. Wu, Jinhui & Yang, Fuwen, 2023. "A dual-driven predictive control for photovoltaic-diesel microgrid secondary frequency regulation," Applied Energy, Elsevier, vol. 334(C).
    15. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    16. Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
    17. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    18. Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).
    19. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
    20. Boning Yang & Xinyi Tang & Chun Yip Yau, 2024. "Empirical prediction intervals for additive Holt–Winters methods under misspecification," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 754-770, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3501-:d:1125849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.