IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3357-d1120487.html
   My bibliography  Save this article

An Overview of the Topics of the Special Issue “The New Techniques for Piezoelectric Energy Harvesting: Design, Optimization, Applications, and Analysis”

Author

Listed:
  • Wael A. Altabey

    (Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
    International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China)

  • Sallam A. Kouritem

    (Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

Abstract

Comprising a total of seven articles divided into five research articles, one review article, and one editorial article, this Special Issue is dedicated to new techniques for piezoelectric energy harvesting and its design, optimization, applications, and analysis [...]

Suggested Citation

  • Wael A. Altabey & Sallam A. Kouritem, 2023. "An Overview of the Topics of the Special Issue “The New Techniques for Piezoelectric Energy Harvesting: Design, Optimization, Applications, and Analysis”," Energies, MDPI, vol. 16(8), pages 1-4, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3357-:d:1120487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wael A. Altabey & Sallam A. Kouritem, 2022. "The New Techniques for Piezoelectric Energy Harvesting: Design, Optimization, Applications, and Analysis," Energies, MDPI, vol. 15(18), pages 1-4, September.
    2. Tyler Alvis & Mikhail Mesh & Abdessattar Abdelkefi, 2023. "Insights on the Effects of Magnetic Forces on the Efficiency of Vibration Energy Harvesting Absorbers in Controlling Dynamical Systems," Energies, MDPI, vol. 16(3), pages 1-46, January.
    3. Sallam A. Kouritem & Muath A. Bani-Hani & Mohamed Beshir & Mohamed M. Y. B. Elshabasy & Wael A. Altabey, 2022. "Automatic Resonance Tuning Technique for an Ultra-Broadband Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(19), pages 1-20, October.
    4. Areeba Naqvi & Ahsan Ali & Wael A. Altabey & Sallam A. Kouritem, 2022. "Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review," Energies, MDPI, vol. 15(19), pages 1-35, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    2. Bjarnhedinn Gudlaugsson & Bethany Marguerite Bronkema & Ivana Stepanovic & David Christian Finger, 2024. "A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting," Energies, MDPI, vol. 17(22), pages 1-42, November.
    3. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    4. Nitin Satpute & Marek Iwaniec & Joanna Iwaniec & Manisha Mhetre & Swapnil Arawade & Siddharth Jabade & Marian Banaś, 2023. "Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification," Energies, MDPI, vol. 16(3), pages 1-22, January.
    5. Dong Geun Jeong & Huidrom Hemojit Singh & Mi Suk Kim & Jong Hoon Jung, 2023. "Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator," Energies, MDPI, vol. 16(4), pages 1-13, February.
    6. Su, Xunwen & Tong, Chang & Pang, Huiren & Tomovic, Mileta, 2023. "Research on pendulum-type tunable vibration energy harvesting," Energy, Elsevier, vol. 278(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3357-:d:1120487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.