IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1315-d1047732.html
   My bibliography  Save this article

Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification

Author

Listed:
  • Nitin Satpute

    (Department of Mechanical Engineering, Faculty of Science and Technology, Vishwakarma University, Pune 411048, India)

  • Marek Iwaniec

    (Department of Biocybernetics and Biomedical Engineering, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Mickiewicz Alley 30, 30-059 Krakow, Poland)

  • Joanna Iwaniec

    (Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicz Alley 30, 30-059 Krakow, Poland)

  • Manisha Mhetre

    (Department of Instrumentation Engineering, Vishwakarma Institute of Technology, Pune 411037, India)

  • Swapnil Arawade

    (Industrial Metal Powder Pvt. Ltd., Bhima Koregaon, Pune 412216, India)

  • Siddharth Jabade

    (Department of Mechanical Engineering, Faculty of Science and Technology, Vishwakarma University, Pune 411048, India)

  • Marian Banaś

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicz Alley 30, 30-059 Krakow, Poland)

Abstract

In this work, the novel design of a sliding mode TriboElectric Nano Generator (TENG)—which can utilize vibration amplitude of a few hundred microns to generate useful electric power—is proposed for the first time. Innovative design features include motion modification to amplify relative displacement of the TENG electrodes and use of biological material-based micron-sized powder at one of the electrodes to increase power output. The sliding mode TENG is designed and fabricated with use of polyurethane foam charged with the biological material micropowder and PolyTetraFluoroEthylene (PTFE) strips as the electrodes. Experimentations on the prototype within frequency range of 0.5–6 Hz ensured peak power density of 0.262 mW/m 2 , corresponding to the TENG electrode size. Further numerical simulation is performed with the theoretical model to investigate the influence of various design parameters on the electric power generated by the TENG. Lastly, application of the proposed TENG is demonstrated in a wearable device as an in-shoe sensor. Conceptual arrangement of the proposed in-shoe sensor is presented, and numerical simulations are performed to demonstrate that the real size application can deliver peak power density of 0.747 mW/m 2 and TENG; the voltage will accurately represent foot vertical force for various foot force patterns.

Suggested Citation

  • Nitin Satpute & Marek Iwaniec & Joanna Iwaniec & Manisha Mhetre & Swapnil Arawade & Siddharth Jabade & Marian Banaś, 2023. "Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification," Energies, MDPI, vol. 16(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1315-:d:1047732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yupeng Mao & Yongsheng Zhu & Tianming Zhao & Changjun Jia & Xiao Wang & Qi Wang, 2021. "Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics," Energies, MDPI, vol. 14(16), pages 1-12, August.
    2. Sallam A. Kouritem & Muath A. Bani-Hani & Mohamed Beshir & Mohamed M. Y. B. Elshabasy & Wael A. Altabey, 2022. "Automatic Resonance Tuning Technique for an Ultra-Broadband Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(19), pages 1-20, October.
    3. Li, Xiang & Cao, Yuying & Yu, Xin & Xu, Yuhong & Yang, Yanfei & Liu, Shiming & Cheng, Tinghai & Wang, Zhong Lin, 2022. "Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    2. Yongsheng Zhu & Fengxin Sun & Changjun Jia & Chaorui Huang & Kuo Wang & Ying Li & Liping Chou & Yupeng Mao, 2022. "A 3D Printing Triboelectric Sensor for Gait Analysis and Virtual Control Based on Human–Computer Interaction and the Internet of Things," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    3. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    4. Mai, Van-Phung & Lee, Tsung-Yu & Yang, Ruey-Jen, 2022. "Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection," Energy, Elsevier, vol. 260(C).
    5. Zhu, Mingkang & Zhang, Jiacheng & Wang, Zhaohui & Yu, Xin & Zhang, Yuejun & Zhu, Jianyang & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting," Applied Energy, Elsevier, vol. 326(C).
    6. Wael A. Altabey & Sallam A. Kouritem, 2023. "An Overview of the Topics of the Special Issue “The New Techniques for Piezoelectric Energy Harvesting: Design, Optimization, Applications, and Analysis”," Energies, MDPI, vol. 16(8), pages 1-4, April.
    7. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    8. Wang, Xinxian & Gao, Qi & Zhu, Mingkang & Wang, Jianlong & Zhu, Jianyang & Zhao, Hongwei & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting," Applied Energy, Elsevier, vol. 323(C).
    9. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    10. Çelebi, Samet & Kocakulak, Tolga & Demir, Usame & Ergen, Gökhan & Yilmaz, Emre, 2023. "Optimizing the effect of a mixture of light naphtha, diesel and gasoline fuels on engine performance and emission values on an HCCI engine," Applied Energy, Elsevier, vol. 330(PB).
    11. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    12. Qi, Youchao & Kuang, Yang & Liu, Yaoyao & Liu, Guoxu & Zeng, Jianhua & Zhao, Junqing & Wang, Lu & Zhu, Meiling & Zhang, Chi, 2022. "Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1315-:d:1047732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.