IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3343-d1119421.html
   My bibliography  Save this article

Hydrogen Production by Catalytic Supercritical Water Gasification of Black Liquor-Based Wastewater

Author

Listed:
  • Hary Demey

    (CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), University Grenoble Alpes, F-38000 Grenoble, France)

  • Gilles Ratel

    (CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), University Grenoble Alpes, F-38000 Grenoble, France)

  • Bruno Lacaze

    (CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), University Grenoble Alpes, F-38000 Grenoble, France)

  • Olivier Delattre

    (CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), University Grenoble Alpes, F-38000 Grenoble, France)

  • Geert Haarlemmer

    (CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), University Grenoble Alpes, F-38000 Grenoble, France)

  • Anne Roubaud

    (CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), University Grenoble Alpes, F-38000 Grenoble, France)

Abstract

In this work, the wastewater obtained from the hydrothermal liquefaction of black liquor was treated and valorized for hydrogen production by supercritical water gasification (SCWG). The influence of the main process parameters on the conversion yield was studied. The experiments were conducted at three different temperatures (below and above the critical point of water): 350 °C, 450 °C and 600 °C. The results showed that by increasing the temperature from 350 °C to 600 °C, the total gas yield was highly improved (from 1.9 mol gas/kg of dried feedstock to 13.1 mol gas/kg of dried feedstock). The H 2 composition was higher than that of CH 4 and CO 2 at 600 °C, and the HHV of the obtained gas was 61.2 MJ/kg. The total organic carbon (TOC) removal efficiency was also improved by increasing the temperature, indicating that the SCWG process could be used for both applications: (i) for wastewater treatment; (ii) for producing a high calorific gas. The experiments with the Raney-nickel catalyst were performed in order to study the catalyst’s influence on the conversion yield. The results indicated that the catalyst enhances carbon conversion and gas production from mild to higher temperatures. The maximum total gas yield obtained with this catalyst was 32.4 mol gas/kg of dried feedstock at 600 °C, which is 2.5 times higher than that obtained at the same operating conditions without a catalyst. The H 2 yield and the HHV of the obtained gas with the catalyst were 20.98 mol gas/kg dried feedstock and 80.2 MJ/kg, respectively. However, the major contribution of the catalytic SCWG process was the improvement of the total gas yield at mild operating temperatures (450 °C), and the obtained performance was even higher than that obtained at 600 °C without catalyst (17.81 mol gas/kg dried feedstock and 13.1 mol gas/kg dried feedstock, respectively). This is a sustainable approach for treating wastewater at mild temperatures by catalytic SCWG.

Suggested Citation

  • Hary Demey & Gilles Ratel & Bruno Lacaze & Olivier Delattre & Geert Haarlemmer & Anne Roubaud, 2023. "Hydrogen Production by Catalytic Supercritical Water Gasification of Black Liquor-Based Wastewater," Energies, MDPI, vol. 16(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3343-:d:1119421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yunan & Yi, Lei & Wei, Wenwen & Jin, Hui & Guo, Liejin, 2022. "Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Ren & Fangjie Ding & Lijun Zhang & Fengping Peng & Jianzhong Guo & Chunzheng Wu, 2024. "Enhanced H 2 Generation via Piezoelectric Reforming of Waste Sugars and Fruits Using Au-Decorated g-C 3 N 4," Sustainability, MDPI, vol. 16(10), pages 1-13, May.
    2. Kumar, Vineet & Malyan, Sandeep Kumar & Apollon, Wilgince & Verma, Pradeep, 2024. "Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach," Renewable Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    2. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    3. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
    4. Qi, Xingang & Li, Xujun & Liu, Fan & Lu, Libo & Jin, Hui & Wei, Wenwen & Chen, Yunan & Guo, Liejin, 2023. "Hydrogen production by kraft black liquor supercritical water gasification: Reaction pathway and kinetic," Energy, Elsevier, vol. 282(C).
    5. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Hu, Dianqi & Ren, Changyifan & Zhang, Shuyuan & Ma, Miaomiao & Chen, Yunan & Chen, Bin & Guo, Liejin, 2024. "Thermodynamic and environmental analysis of integrated supercritical water gasification of sewage sludge for power and hydrogen production," Energy, Elsevier, vol. 299(C).
    7. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).
    8. Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3343-:d:1119421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.