IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3236-d1115615.html
   My bibliography  Save this article

Pyrolytic Conversion of Cellulosic Pulps from “Lignin-First” Biomass Fractionation

Author

Listed:
  • Charles A. Mullen

    (USDA-Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Candice Ellison

    (USDA-Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

  • Yaseen Elkasabi

    (USDA-Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA)

Abstract

Utilization of lignin is among the most pressing problems for biorefineries that convert lignocellulosic biomass to fuels and chemicals. Recently “lignin-first” biomass fractionation has received increasing attention. In most biorefining concepts, carbohydrate portions of the biomass are separated, and their monomeric sugar components released, while the relatively chemically stable lignin rich byproduct remains underutilized. Conversely, in lignin-first processes, a one-pot fractionation and depolymerization is performed, leading to an oil rich in phenolic compounds and a cellulosic pulp. Usually, the pulp is considered as a fermentation feedstock to produce ethanol. Herein, the results of a study where various cellulosic pulps are tested for their potential to produce valuable products via pyrolysis processes, assessed via analytical pyrolysis (py-GC), are presented. Samples of herbaceous (switchgrass) and woody biomass (oak) were subjected to both an acid-catalyzed and a supported-metal-catalyzed reductive lignin-first depolymerization, and the pulps were compared. Fast pyrolysis of the pulps produced levoglucosan in yields of up to about 35 wt %. When normalized for the amount of biomass entering the entire process, performing the lignin-first reductive depolymerization resulted in 4.0–4.6 times the yield of levoglucosan than pyrolysis of raw biomass. Pulps derived from switchgrass were better feedstocks for levoglucosan production compared with pulps from oak, and pulps produced from metal-on-carbon catalyzed depolymerization produced more levoglucosan than those from acid-catalyzed depolymerization. Catalytic pyrolysis over HZSM-5 produced aromatic hydrocarbons from the pulps. In this case, the yields were similar from both feedstocks and catalyst types, suggesting that there is no advantage to lignin fractionation prior to zeolite-catalyzed catalytic pyrolysis for hydrocarbons.

Suggested Citation

  • Charles A. Mullen & Candice Ellison & Yaseen Elkasabi, 2023. "Pyrolytic Conversion of Cellulosic Pulps from “Lignin-First” Biomass Fractionation," Energies, MDPI, vol. 16(7), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3236-:d:1115615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, Vivek & Adhikari, Sushil & Cross, Phillip & Jahromi, Hossein, 2020. "Progress in the solvent depolymerization of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Su, Ying & Guo, Bingfeng & Hornung, Ursel & Dahmen, Nicolaus, 2022. "FeCl3-supported solvothermal liquefaction of Miscanthus in methanol," Energy, Elsevier, vol. 258(C).
    3. Kong, Xiangchen & Liu, Chao & Wang, Xing & Fan, Yuyang & Xu, Weicong & Xiao, Rui, 2022. "Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3236-:d:1115615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.