IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2962-d1105886.html
   My bibliography  Save this article

Wind SRG-Based Bipolar DC Microgrid with Grid-Connected and Plug-In Energy Supporting Functions

Author

Listed:
  • Shangping Lin

    (Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan)

  • Yujie Huang

    (Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan)

  • Changming Liaw

    (Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan)

Abstract

Although a switched reluctance generator (SRG) is not the mainstream wind generator, it possesses the application potential and is worth developing for its many structural merits and high developed power ability. This paper presents a wind SRG-based bipolar DC microgrid having grid-connected and plug-in energy supporting functions. First, a surface-mounted permanent magnet synchronous motor (SPMSM)-driven wind turbine emulator (WTE) is established. Next, the wind SRG with an asymmetric bridge converter is developed. Good generating characteristics are obtained through proper designs of power circuit, commutation mechanism, external excitation source, voltage and current controllers. Third, a DC/DC boost interface converter and a bipolar voltage balancer are constructed to establish the 500 V microgrid bipolar DC-bus. To preserve the microgrid power supplying quality, a battery energy storage system (BESS) with bidirectional DC/DC interface converter is equipped. A dump load leg is added across the bus to limit the DC-bus voltage under energy surplus condition. In load side, a three-phase bidirectional load inverter is developed, which can be operated as a single-phase three-wire (1P3W) inverter or a three-phase three-wire (3P3W) inverter. Good sinusoidal voltage waveform and regulation characteristics are obtained using the proportional-resonant (PR) control. The microgrid to load and microgrid to grid operations are conductible. Finally, to further improve the powering reliability of microgrid, a three-phase T-type Vienna switch-mode rectifier (SMR) based plug-in energy supporting scheme is developed. When the microgrid energy shortage occurs, the possible harvested energy can be used to supply the microgrid.

Suggested Citation

  • Shangping Lin & Yujie Huang & Changming Liaw, 2023. "Wind SRG-Based Bipolar DC Microgrid with Grid-Connected and Plug-In Energy Supporting Functions," Energies, MDPI, vol. 16(7), pages 1-32, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2962-:d:1105886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cong Wang & Jinqi Liu & Hong Cheng & Yuan Zhuang & Zhihao Zhao, 2019. "A Modified One-Cycle Control for Vienna Rectifiers with Functionality of Input Power Factor Regulation and Input Current Distortion Mitigation," Energies, MDPI, vol. 12(17), pages 1-20, September.
    2. Marvin Lema & Wilson Pavon & Leony Ortiz & Ama Baduba Asiedu-Asante & Silvio Simani, 2022. "Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability," Energies, MDPI, vol. 15(15), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anees Vettuparambil & Praveen Raveendran Nair Prasannakumari & Walied Alharbi & Abdullah S. Bin Humayd & Ahmed Bilal Awan, 2022. "Buck-Boost-Integrated, Dual-Active Bridge-Based Four-Port Interface for Hybrid Energy Systems," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    2. Ahmed H. EL-Ebiary & Mohamed Mokhtar & Atef M. Mansour & Fathy H. Awad & Mostafa I. Marei & Mahmoud A. Attia, 2022. "Distributed Mitigation Layers for Voltages and Currents Cyber-Attacks on DC Microgrids Interfacing Converters," Energies, MDPI, vol. 15(24), pages 1-32, December.
    3. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.
    4. Sizhe Zhang & Jinqi Liu & Jihong Wang, 2023. "High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine," Energies, MDPI, vol. 16(4), pages 1-22, February.
    5. Ben Zhao & Yigeng Huangfu & Alexander Abramovitz, 2020. "Derivation of OCC Modulator for Grid-Tied Single-Stage Buck-Boost Inverter Operating in the Discontinuous Conduction Mode," Energies, MDPI, vol. 13(12), pages 1-15, June.
    6. Rodrigo De A. Teixeira & Werbet L. A. Silva & Guilherme A. P. De C. A. Pessoa & Joao T. Carvalho Neto & Elmer R. L. Villarreal & Andrés O. Salazar & Alberto S. Lock, 2020. "One Cycle Control of a PWM Rectifier a New Approach," Energies, MDPI, vol. 13(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2962-:d:1105886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.