IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2295-d1082204.html
   My bibliography  Save this article

Towards a Power Production from 100% Renewables: The Italian Case Study

Author

Listed:
  • Lorenzo Ferrari

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 1, 56122 Pisa, Italy)

  • Gianluca Pasini

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 1, 56122 Pisa, Italy)

  • Umberto Desideri

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 1, 56122 Pisa, Italy)

Abstract

The need to reduce greenhouse gas emissions is driving many actions to decarbonize the most impactful sectors. Among these, the energy sector accounts for almost one third of emissions. Increasing the penetration of renewable energy in the energy mix could easily reduce the emissions of this sector. Theoretically, the target to aim for would be 100% renewable energy production. However, the variable nature of power production from photovoltaic and wind systems, which are expected to play a key role in the energy transition, may pose several limitations to the effective penetration of renewable energy. Many concerns arise when one considers the large diffusion of renewable energy that would be required to meet green targets, and the operating conditions of other systems in charge of compensating for renewable energy variations. This study aims to investigate the potential impact of an increase in the amount of renewable energy installed in a country, particularly in Italy. A simplified approach has been used, based on the assumption of knowing the hourly demand and power generation mix, and multiplying the intermittent power generation by a certain factor. Although not accurate, this approach allows the authors to highlight some critical aspects regarding the potential surplus of renewable energy and the operating conditions of other energy sources. The results of this study may provide a useful basis for a preliminary system evaluation, in particular to assess the feasibility of surplus recovery and the operability of residual generation systems. In addition, it may be easily replicated in other countries for similar estimations.

Suggested Citation

  • Lorenzo Ferrari & Gianluca Pasini & Umberto Desideri, 2023. "Towards a Power Production from 100% Renewables: The Italian Case Study," Energies, MDPI, vol. 16(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2295-:d:1082204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gómez-Calvet, Roberto & Martínez-Duart, José Manuel & Serrano-Calle, Silvia, 2019. "Current state and optimal development of the renewable electricity generation mix in Spain," Renewable Energy, Elsevier, vol. 135(C), pages 1108-1120.
    2. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    3. Alessia Gargiulo & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Italian Electricity Scenarios to 2030," Energies, MDPI, vol. 13(15), pages 1-16, July.
    4. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    5. Cieplinski, A. & D'Alessandro, S. & Marghella, F., 2021. "Assessing the renewable energy policy paradox: A scenario analysis for the Italian electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonilla, Javier & Blanco, Julian & Zarza, Eduardo & Alarcón-Padilla, Diego C., 2022. "Feasibility and practical limits of full decarbonization of the electricity market with renewable energy: Application to the Spanish power sector," Energy, Elsevier, vol. 239(PE).
    2. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    3. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    4. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    5. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    6. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    7. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    8. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    9. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    10. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    11. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    12. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    13. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    14. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    15. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    16. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    17. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    18. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    19. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    20. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2295-:d:1082204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.