IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2044-d1073374.html
   My bibliography  Save this article

Linear Model for Two-Layer Porous Bed Suspended with Nano Sized Particles

Author

Listed:
  • Jawali C. Umavathi

    (Department of Mathematics, Gulbarga University, Gulbarga 585 106, Karnataka, India)

  • Mikhail A. Sheremet

    (Department of Theoretical Mechanics, Tomsk State University, 634050 Tomsk, Russia
    Laboratory for Interdisciplinary Problems of Energy Production, Ulyanovsk State Technical University, 432027 Ulyanovsk, Russia)

Abstract

Two immiscible fluids flows are materialized in science and technology; the combined convection of the two immiscible fluids in a square conduit is reviewed in this study. The nanofluid and pure viscous fluid which do not mix are discussed, and both layers saturated with a porous matrix have different permeabilities. The Dupuit–Forchheimer and Tiwari–Das models are applied to outline the permeability of the layer and nanofluids, respectively. The finite difference method is utilized to find the solutions of conservation equations along with suitable boundary and interface conditions. The boundary condition for the velocity is no slip at all the boundaries, while continuity of velocity and shear stress are used at the interface. The left and right walls are kept at constant but different temperatures, the top and bottom walls are isolated, and the continuity of temperature and heat flux is assumed at the interface. Grashof number, Brinkman number, Darcy number, inertia parameter, permeability ratio, solid volume fraction, thermal conductivity and viscosity ratios, different nanoparticles, and various base liquids of the two-layered fluids are engaged. The velocity is depleted by the inertia and viscosity ratio while it is accelerated with the Darcy and Grashof numbers. The energy distribution was not modulated significantly with any of the dimensionless numbers. Using copper nanoparticles doped in mineral oil and ethylene glycol produced the peak momentum. Diamond nanoparticles dropped in water catalysis showed the best heat transfer rate.

Suggested Citation

  • Jawali C. Umavathi & Mikhail A. Sheremet, 2023. "Linear Model for Two-Layer Porous Bed Suspended with Nano Sized Particles," Energies, MDPI, vol. 16(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2044-:d:1073374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheremet, Mikhail A. & Revnic, Cornelia & Pop, Ioan, 2017. "Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khademi, Ramin & Razminia, Abolhassan & Shiryaev, Vladimir I., 2020. "Conjugate-mixed convection of nanofluid flow over an inclined flat plate in porous media," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    2. Pal, S.K. & Bhattacharyya, S. & Pop, I., 2019. "A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 219-234.
    3. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. S. A. M. Mehryan & Kaamran Raahemifar & Leila Sasani Gargari & Ahmad Hajjar & Mohamad El Kadri & Obai Younis & Mohammad Ghalambaz, 2021. "Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    5. Yu, Qiang, 2021. "A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    6. Azizul, Fatin M. & Alsabery, Ammar I. & Hashim, Ishak & Chamkha, Ali J., 2021. "Impact of heat source on combined convection flow inside wavy-walled cavity filled with nanofluids via heatline concept," Applied Mathematics and Computation, Elsevier, vol. 393(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2044-:d:1073374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.