IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2026-d1072755.html
   My bibliography  Save this article

Developing Feedforward Neural Networks as Benchmark for Load Forecasting: Methodology Presentation and Application to Hospital Heat Load Forecasting

Author

Listed:
  • Malte Stienecker

    (Fraunhofer UMSICHT, Fraunhofer Institute for Environmental, Safety, and Energy Technology, Osterfelder Str.3, 46047 Oberhausen, Germany)

  • Anne Hagemeier

    (Fraunhofer UMSICHT, Fraunhofer Institute for Environmental, Safety, and Energy Technology, Osterfelder Str.3, 46047 Oberhausen, Germany)

Abstract

For load forecasting, numerous machine learning (ML) approaches have been published. Besides fully connected feedforward neural networks (FFNNs), also called multilayer perceptron, more advanced ML approaches like deep, recurrent or convolutional neural networks or ensemble methods have been applied. However, evaluating the added benefit by novel approaches is difficult. Statistical or rule-based methods constitute a too low benchmark. FFNNs need extensive tuning due to their manifold design choices. To address this issue, a structured, comprehensible five-step FFNN model creation methodology is presented, which constitutes of initial model creation, internal parameter selection, feature engineering, architecture tuning and final model creation. The methodology is then applied to forecast real world heat load data of a hospital in Germany. The forecast constitutes of 192 values (upcoming 48 h in 15 min resolution) and is composed of a multi-model univariate forecasting strategy, with three test models developed at first. As a result, the test models show great similarities which simplifies creation of the remaining models. A performance increase of up to 18% between initial and final models points out the importance of model tuning. As a conclusion, comprehensible model tuning is vital to use FFNN models as benchmark. The effort needed can be reduced by the experience gained through repeated application of the presented methodology.

Suggested Citation

  • Malte Stienecker & Anne Hagemeier, 2023. "Developing Feedforward Neural Networks as Benchmark for Load Forecasting: Methodology Presentation and Application to Hospital Heat Load Forecasting," Energies, MDPI, vol. 16(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2026-:d:1072755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Manno & Emanuele Martelli & Edoardo Amaldi, 2022. "A Shallow Neural Network Approach for the Short-Term Forecast of Hourly Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-21, January.
    2. Ma, Deyin & Zhang, Lizhi & Sun, Bo, 2021. "An interval scheduling method for the CCHP system containing renewable energy sources based on model predictive control," Energy, Elsevier, vol. 236(C).
    3. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    4. Alfonso González González & Justo García-Sanz-Calcedo & David Rodríguez Salgado, 2018. "Evaluation of Energy Consumption in German Hospitals: Benchmarking in the Public Sector," Energies, MDPI, vol. 11(9), pages 1-14, August.
    5. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Maryniak & Marian Banaś & Piotr Michalak & Jakub Szymiczek, 2024. "Forecasting of Daily Heat Production in a District Heating Plant Using a Neural Network," Energies, MDPI, vol. 17(17), pages 1-19, September.
    2. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    3. Binglin Li & Yong Shao & Yufeng Lian & Pai Li & Qiang Lei, 2023. "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-14, August.
    4. Stienecker, Malte, 2024. "Impact of forecasted heat demand on day-ahead optimal scheduling and real time control of multi-energy systems," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    2. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    3. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    4. Kazimierz Kawa & Rafał Mularczyk & Waldemar Bauer & Katarzyna Grobler-Dębska & Edyta Kucharska, 2024. "Prediction of Energy Consumption on Example of Heterogenic Commercial Buildings," Energies, MDPI, vol. 17(13), pages 1-16, June.
    5. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    6. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    7. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    8. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    9. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    11. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    12. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    14. Meng Wang & Junqi Yu & Meng Zhou & Wei Quan & Renyin Cheng, 2023. "Joint Forecasting Model for the Hourly Cooling Load and Fluctuation Range of a Large Public Building Based on GA-SVM and IG-SVM," Sustainability, MDPI, vol. 15(24), pages 1-23, December.
    15. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
    16. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    17. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    18. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    19. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    20. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2026-:d:1072755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.