IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1813-d1065634.html
   My bibliography  Save this article

Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium

Author

Listed:
  • Giuseppe Toscano

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI), Università degli Studi di Napoli Federico II, 80125 Napoli, Italy)

  • Gaetano Zuccaro

    (Nereus SAS, 34230 Le Pouget, France)

  • Anna Corsini

    (Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, 20133 Milano, Italy)

  • Sarah Zecchin

    (Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, 20133 Milano, Italy)

  • Lucia Cavalca

    (Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, 20133 Milano, Italy)

Abstract

The dark fermentation of lignocellulose hydrolysates is a promising process for the production of hydrogen from renewable sources. Nevertheless, hydrogen yields are often lower than those obtained from other carbohydrate sources due to the presence of microbial growth inhibitors in lignocellulose hydrolysates. In this study, a microbial consortium for the production of hydrogen by dark fermentation has been obtained from a wild methanogenic sludge by means of thermal treatments. The consortium has been initially acclimated to a glucose-based medium and then used as inoculum for the fermentation of Arundo donax hydrolysates. Hydrogen yields obtained from fermentation of A. donax hydrolysates were lower than those obtained from glucose fermentation using the same inoculum (0.30 ± 0.05 versus 1.11 ± 0.06 mol of H 2 per mol of glucose equivalents). The hydrogen-producing bacteria belonged mainly to the Enterobacteriaceae family in cultures growing on glucose and to Clostridium in those growing on A. donax hydrolysate. In the latter cultures, Lactobacillus outcompeted Enterobacteriaceae , although Clostridium also increased. Lactobacillus outgrowth could account for the lower yields observed in cultures growing on A. donax hydrolysate.

Suggested Citation

  • Giuseppe Toscano & Gaetano Zuccaro & Anna Corsini & Sarah Zecchin & Lucia Cavalca, 2023. "Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium," Energies, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1813-:d:1065634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciro Vasmara & Stefano Cianchetta & Rosa Marchetti & Enrico Ceotto & Stefania Galletti, 2022. "Hydrogen Production from Enzymatic Hydrolysates of Alkali Pre-Treated Giant Reed ( Arundo donax L.)," Energies, MDPI, vol. 15(13), pages 1-17, July.
    2. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2023. "Advancements in Giant Reed ( Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    3. Leandro Gomes & Jorge Costa & Joana Moreira & Berta Cumbane & Marcelo Abias & Fernando Santos & Federica Zanetti & Andrea Monti & Ana Luisa Fernando, 2022. "Switchgrass and Giant Reed Energy Potential when Cultivated in Heavy Metals Contaminated Soils," Energies, MDPI, vol. 15(15), pages 1-28, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    2. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2023. "Advancements in Giant Reed ( Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    3. Stefano Cianchetta & Enrico Ceotto & Stefania Galletti, 2023. "Microbial Oil Production from Alkali Pre-Treated Giant Reed ( Arundo donax L.) by Selected Fungi," Energies, MDPI, vol. 16(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1813-:d:1065634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.