IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1660-d1060622.html
   My bibliography  Save this article

Rainwater Energy Harvesting Using Micro-Turbines in Downpipes

Author

Listed:
  • Josie Carter

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Amin Rahmani

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mahdieh Dibaj

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mohammad Akrami

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

Abstract

Renewable energy sources are rapidly increasing in demand and importance as governments and countries around the globe begin to understand their vital role in reducing climate change. This project aimed to design and create an optimised micro-hydro turbine system for downpipes to harness the currently untapped potential energy from rainwater. Experimental methods were used to determine the magnitude of voltage output available at different rainfall intensities by simulating such flow rates on a hydraulic bench. The viability of this energy to power household appliances was then evaluated, and methods of increasing the voltage output were assessed, such as layering the turbines in a single downpipe or placing multiple downpipes around the building. The study determined that, during average rainfall in the UK, a single turbine could produce a maximum of 7.21 V of DC voltage, or 50.49 V during heavy rainfall—enough energy to power a mobile device charger or a vacuum cleaner, respectively. Therefore, this proves a high potential in rainwater energy harvesting as a renewable energy source. It was also concluded that a positive correlation occurred for both the number of turbines in a downpipe and the number of pipes around the building with the voltage output of the whole system.

Suggested Citation

  • Josie Carter & Amin Rahmani & Mahdieh Dibaj & Mohammad Akrami, 2023. "Rainwater Energy Harvesting Using Micro-Turbines in Downpipes," Energies, MDPI, vol. 16(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1660-:d:1060622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
    2. Malla, Ramesh B. & Shrestha, Binu & Bagtzoglou, Amvrossios & Drasdis, Jonathon & Johnson, Paul, 2011. "Hydropower harvesting from a small scale reciprocating system," Renewable Energy, Elsevier, vol. 36(5), pages 1568-1577.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    2. Wang, Xue & Wang, Hongchao & Su, Wenbing & Chen, Tingting & Tan, Chang & Madre, María A. & Sotelo, Andres & Wang, Chunlei, 2022. "U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan," Energy, Elsevier, vol. 238(PB).
    3. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    5. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    6. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    7. Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
    8. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    9. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    10. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Liu, Shuang & Ma, Limin & Zhen, Cheng & Li, Dan & Wang, Yishu & Jia, Qiang & Guo, Fu, 2023. "Enhancing power generation sustainability of thermoelectric pillars by suppressing diffusion at Bi-Sb-Te/Sn electrode interface using crystalline Co-P coatings," Applied Energy, Elsevier, vol. 352(C).
    12. Tucker Harvey, S. & Khovanov, I.A. & Murai, Y. & Denissenko, P., 2020. "Characterisation of aeroelastic harvester efficiency by measuring transient growth of oscillations," Applied Energy, Elsevier, vol. 268(C).
    13. Yu, Yuedong & Zhu, Wei & Wang, Yaling & Zhu, Pengcheng & Peng, Kang & Deng, Yuan, 2020. "Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique," Applied Energy, Elsevier, vol. 275(C).
    14. Pang, Dandan & Zhang, Aibing & Guo, Yage & Wu, Junfeng, 2023. "Energy harvesting analysis of wearable thermoelectric generators integrated with human skin," Energy, Elsevier, vol. 282(C).
    15. Roberto De Fazio & Roberta Proto & Carolina Del-Valle-Soto & Ramiro Velázquez & Paolo Visconti, 2022. "New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends," Energies, MDPI, vol. 15(18), pages 1-37, September.
    16. Park, Gimin & Kim, Jiyong & Woo, Seungjai & Yu, Jinwoo & Khan, Salman & Kim, Sang Kyu & Lee, Hotaik & Lee, Soyoung & Kwon, Boksoon & Kim, Woochul, 2022. "Modeling heat transfer in humans for body heat harvesting and personal thermal management," Applied Energy, Elsevier, vol. 323(C).
    17. Sargolzaeiaval, Yasaman & Ramesh, Viswanath Padmanabhan & Ozturk, Mehmet C., 2022. "A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity," Applied Energy, Elsevier, vol. 324(C).
    18. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    19. Sun, Yu-Yuan & Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Effects of electrode placement position and tilt angles of a platform on voltage induced by NaCl electrolyte flowing over graphene wafer," Applied Energy, Elsevier, vol. 261(C).
    20. Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1660-:d:1060622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.