IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1440-d1053909.html
   My bibliography  Save this article

Stability Impacts of an Alternate Voltage Controller (AVC) on Wind Turbines with Different Grid Strengths

Author

Listed:
  • Dimitrios Dimitropoulos

    (AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Xiongfei Wang

    (AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

This paper studies the stability impact of the alternate voltage controller’s (AVC) low-pass filter (LPF) in a wind turbine’s grid-connected voltage source converter (VSC). A small-signal model of the grid-connected converter is designed with a grid-following synchronization control. More specifically, the non-linear state-space model of the grid-connected converter was developed, including the dynamics of both the inner and outer control loops of the converter, the dynamics of the elements of the electrical system, as well as the digital time delay. An eigenvalue-based stability analysis gives insight into the stability impacts of the outer-loop controllers. It is proven that the cutoff frequency of the AVC’s LPF affects the phase-locked loop (PLL) and AVC bandwidths of instability, as well as the corresponding critical oscillation frequencies. This phenomenon is observed in both weak and strong grids. Consequently, the small-signal stability regions of the PLL and AVC bandwidth can be identified for the range of the AVC’s LPF cutoff frequency under study. The stability regions of the PLL and AVC, which are obtained from the small-signal model, as well as the determined critical oscillation frequencies, are validated through time domain simulations and fast-Fourier transformation (FFT) analysis.

Suggested Citation

  • Dimitrios Dimitropoulos & Xiongfei Wang & Frede Blaabjerg, 2023. "Stability Impacts of an Alternate Voltage Controller (AVC) on Wind Turbines with Different Grid Strengths," Energies, MDPI, vol. 16(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1440-:d:1053909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoine Musengimana & Haoyu Li & Xuemei Zheng & Yanxue Yu, 2021. "Small-Signal Model and Stability Control for Grid-Connected PV Inverter to a Weak Grid," Energies, MDPI, vol. 14(13), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Dimitropoulos & Mohammad Kazem Bakhshizadeh & Lukasz Kocewiak & Xiongfei Wang & Frede Blaabjerg, 2024. "Impact of Synchronous Condensers’ Ratings on Mitigating Subsynchronous Oscillations in Wind Farms," Energies, MDPI, vol. 17(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqian Zhang & Carina Lehmal & Philipp Hackl & Robert Schuerhuber, 2022. "Transient Stability Analysis and Post-Fault Restart Strategy for Current-Limited Grid-Forming Converter," Energies, MDPI, vol. 15(10), pages 1-26, May.
    2. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1440-:d:1053909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.