IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3907-d584850.html
   My bibliography  Save this article

Small-Signal Model and Stability Control for Grid-Connected PV Inverter to a Weak Grid

Author

Listed:
  • Antoine Musengimana

    (Department of Electrical and Automation Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Haoyu Li

    (Department of Electrical and Automation Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Xuemei Zheng

    (Department of Electrical and Automation Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yanxue Yu

    (Department of Electrical and Automation Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

This paper presents a small signal stability analysis to assess the stability issues facing PV (photovoltaic) inverters connected to a weak grid. It is revealed that the cause of the transient instabilities, either high-frequency or low-frequency oscillations, is dominated by the outer control loops and the grid strength. However, most challenging oscillations are low-frequency oscillations induced by coupling interaction between the outer loop controller and PLL (Phase-Locked Loop) when the inverter is connected to a weak grid. Therefore, the paper proposes a low-frequency damping methodology in order to enhance the high system integration, while maintaining the stability of the system. The control method uses a DC link voltage error to modulate the reference reactive current. The proposed control reduces the low-frequency coupling between the DVC (DC link voltage controller), AVC (AC voltage controller) and PLL (Phase-locked loop). According to this study’s results, the performance capability of the grid-connected PV inverter is improved and flexibility in the outer loop controller design is enhanced. The control strategy proposed in this paper is tested using the PLECS simulation software (Plexim GmbH, Zurich Switzerland) and the results are compared with the conventional method.

Suggested Citation

  • Antoine Musengimana & Haoyu Li & Xuemei Zheng & Yanxue Yu, 2021. "Small-Signal Model and Stability Control for Grid-Connected PV Inverter to a Weak Grid," Energies, MDPI, vol. 14(13), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3907-:d:584850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3907/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziqian Zhang & Carina Lehmal & Philipp Hackl & Robert Schuerhuber, 2022. "Transient Stability Analysis and Post-Fault Restart Strategy for Current-Limited Grid-Forming Converter," Energies, MDPI, vol. 15(10), pages 1-26, May.
    2. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    3. Dimitrios Dimitropoulos & Xiongfei Wang & Frede Blaabjerg, 2023. "Stability Impacts of an Alternate Voltage Controller (AVC) on Wind Turbines with Different Grid Strengths," Energies, MDPI, vol. 16(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3907-:d:584850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.