IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1403-d1052720.html
   My bibliography  Save this article

Deployment of IoT-Based Smart Demand-Side Management System with an Enhanced Degree of User Comfort at an Educational Institution

Author

Listed:
  • S. Charles Raja

    (Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, Tamil Nadu, India)

  • A. C. Vishnu Dharssini

    (Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, Tamil Nadu, India)

  • J. Jeslin Drusila Nesmalar

    (Department of Electrical and Electronics Engineering, Tamilnadu Government Polytechnic College, Madurai 625011, Tamil Nadu, India)

  • T. Karthick

    (Quantanics Techserv Pvt. Ltd., Madurai 625016, Tamil Nadu, India)

Abstract

Nowadays, the Internet of Things (IoT) has a wide impact on many potential applications. The impact of IoT on performing demand-side management (DSM) in an Indian educational institution has not been researched in depth before. In this research work, an IoT-enabled SDSMS (Smart DSM System) has been deployed with the main objective of minimizing electricity tariff and also to tweak the quality of user comfort. It can be feasible by prioritizing available renewable PV solar energy during peak hours in an Indian educational institution. DSM has been performed using day-ahead load shifting and rescheduling the different classes of institutional loads by applying hybrid BPSOGSA (Binary Particle Swarm Optimization and Gravitational Search Algorithm). The BPSOGSA performance on DSM has been evaluated based on electricity tariff, peak demand range, and PAR and compared with the outcomes of both binary conventional algorithms BPSO and BGSA, respectively. The proposed method enhances the degree of user comfort (DUC) by tripping the operation of non-critical institutional loads. Simulation results obtained using MATLAB corroborate that BPSOGSA outperforms both BPSO and BGSA under both DSM scenarios. Before DSM, Peak demand, PAR, and Electricity tariffs were found to be 1855.47 kW, 4.1286, and $2030.67 while after DSM, they reduced to 1502.24 kW, 3.263, and $1314.40 respectively. This indicates a 35.273% reduction in electricity tariff, a 19.037% scale down in peak demand, and a 20.97% reduction in PAR. Finally, the real-time IoT-based SDSMS hardware is implemented at the Renewable energy laboratory for real monitoring of energy consumption via the Blynk application.

Suggested Citation

  • S. Charles Raja & A. C. Vishnu Dharssini & J. Jeslin Drusila Nesmalar & T. Karthick, 2023. "Deployment of IoT-Based Smart Demand-Side Management System with an Enhanced Degree of User Comfort at an Educational Institution," Energies, MDPI, vol. 16(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1403-:d:1052720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karthick Tamilarasu & Charles Raja Sathiasamuel & Jeslin Drusila Nesamalar Joseph & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "Reinforced Demand Side Management for Educational Institution with Incorporation of User’s Comfort," Energies, MDPI, vol. 14(10), pages 1-22, May.
    2. Nadeem Javaid & Sakeena Javaid & Wadood Abdul & Imran Ahmed & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid," Energies, MDPI, vol. 10(3), pages 1-27, March.
    3. Huang, Shan-Huen & Lin, Pei-Chun, 2010. "A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 598-611, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria G. Ioannides & Anastasios P. Stamelos & Stylianos A. Papazis & Erofili E. Stamataki & Michael E. Stamatakis, 2024. "Internet of Things-Based Control of Induction Machines: Specifics of Electric Drives and Wind Energy Conversion Systems," Energies, MDPI, vol. 17(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ying & Qi, Mingyao & Miao, Lixin & Liu, Erchao, 2014. "Hybrid metaheuristic solutions to inventory location routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 305-323.
    2. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    3. Saha, Subrata & Chatterjee, Debajyoti & Sarkar, Biswajit, 2021. "The ramification of dynamic investment on the promotion and preservation technology for inventory management through a modified flower pollination algorithm," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    4. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    5. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    6. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    7. Paredes-Belmar, Germán & Marianov, Vladimir & Bronfman, Andrés & Obreque, Carlos & Lüer-Villagra, Armin, 2016. "A milk collection problem with blending," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 26-43.
    8. Upasana Lakhina & Nasreen Badruddin & Irraivan Elamvazuthi & Ajay Jangra & Truong Hoang Bao Huy & Josep M. Guerrero, 2023. "An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids," Mathematics, MDPI, vol. 11(9), pages 1-24, April.
    9. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    10. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    11. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    12. Chih-Kang Lin & Shangyao Yan & Fei-Yen Hsiao, 2021. "Optimal Inventory Level Control and Replenishment Plan for Retailers," Networks and Spatial Economics, Springer, vol. 21(1), pages 57-83, March.
    13. Feng, Yuqiang & Che, Ada & Tian, Na, 2024. "Robust inventory routing problem under uncertain demand and risk-averse criterion," Omega, Elsevier, vol. 127(C).
    14. Vidović, Milorad & Popović, Dražen & Ratković, Branislava, 2014. "Mixed integer and heuristics model for the inventory routing problem in fuel delivery," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 593-604.
    15. Li, Ming & Wang, Zheng & Chan, Felix T.S., 2016. "A robust inventory routing policy under inventory inaccuracy and replenishment lead-time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 290-305.
    16. Fahad Alsokhiry & Pierluigi Siano & Andres Annuk & Mohamed A. Mohamed, 2022. "A Novel Time-of-Use Pricing Based Energy Management System for Smart Home Appliances: Cost-Effective Method," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    17. Cheng, Chun & Qi, Mingyao & Wang, Xingyi & Zhang, Ying, 2016. "Multi-period inventory routing problem under carbon emission regulations," International Journal of Production Economics, Elsevier, vol. 182(C), pages 263-275.
    18. Mirzapour Al-e-hashem, S.M.J. & Rekik, Yacine, 2014. "Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach," International Journal of Production Economics, Elsevier, vol. 157(C), pages 80-88.
    19. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    20. Sheraz Aslam & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Khursheed Aurangzeb & Syed Irtaza Haider, 2017. "Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 10(12), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1403-:d:1052720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.