IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1078-d1040270.html
   My bibliography  Save this article

Energy Savings in Buildings Based on Image Depth Sensors for Human Activity Recognition

Author

Listed:
  • Omar Mata

    (Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico)

  • Juana Isabel Méndez

    (Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico)

  • Pedro Ponce

    (Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico)

  • Therese Peffer

    (Institute for Energy and Environment, University of California, Berkeley, CA 94720, USA)

  • Alan Meier

    (Energy and Efficiency Institute, University of California, Davis, CA 95616, USA)

  • Arturo Molina

    (Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico)

Abstract

A smart city is a city that binds together technology, society, and government to enable the existence of a smart economy, smart mobility, smart environment, smart living, smart people, and smart governance in order to reduce the environmental impact of cities and improve life quality. The first step to achieve a fully connected smart city is to start with smaller modules such as smart homes and smart buildings with energy management systems. Buildings are responsible for a third of the total energy consumption; moreover, heating, ventilation, and air conditioning (HVAC) systems account for more than half of the residential energy consumption in the United States. Even though connected thermostats are widely available, they are not used as intended since most people do not have the expertise to control this device to reduce energy consumption. It is commonly set according to their thermal comfort needs; therefore, unnecessary energy consumption is often caused by wasteful behaviors and the estimated energy saving is not reached. Most studies in the thermal comfort domain to date have relied on simple activity diaries to estimate metabolic rate and fixed values of clothing parameters for strategies to set the connected thermostat’s setpoints because of the difficulty in tracking those variables. Therefore, this paper proposes a strategy to save energy by dynamically changing the setpoint of a connected thermostat by human activity recognition based on computer vision preserving the occupant’s thermal comfort. With the use of a depth sensor in conjunction with an RGB (Red–Green–Blue) camera, a methodology is proposed to eliminate the most common challenges in computer vision: background clutter, partial occlusion, changes in scale, viewpoint, lighting, and appearance on human detection. Moreover, a Recurrent Neural Network (RNN) is implemented for human activity recognition (HAR) because of its data’s sequential characteristics, in combination with physiological parameters identification to estimate a dynamic metabolic rate. Finally, a strategy for dynamic setpoints based on the metabolic rate, predicted mean vote (PMV) parameter and the air temperature is simulated using EnergyPlus™ to evaluate the energy consumption in comparison with the expected energy consumption with fixed value setpoints. This work contributes with a strategy to reduce energy consumption up to 15% in buildings with connected thermostats from the successful implementation of the proposed method.

Suggested Citation

  • Omar Mata & Juana Isabel Méndez & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2023. "Energy Savings in Buildings Based on Image Depth Sensors for Human Activity Recognition," Energies, MDPI, vol. 16(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1078-:d:1040270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meier, Alan & Ueno, Tsuyoshi & Pritoni, Marco, 2019. "Using data from connected thermostats to track large power outages in the United States," Applied Energy, Elsevier, vol. 256(C).
    2. Manuel Avila & Juana Isabel Méndez & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2021. "Energy Management System Based on a Gamified Application for Households," Energies, MDPI, vol. 14(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lichen Su & Jinlong Ouyang & Li Yang, 2023. "Mixed-Mode Ventilation Based on Adjustable Air Velocity for Energy Benefits in Residential Buildings," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adán Medina & Juana Isabel Méndez & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Using Deep Learning in Real-Time for Clothing Classification with Connected Thermostats," Energies, MDPI, vol. 15(5), pages 1-28, March.
    2. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    3. Vivian Do & Heather McBrien & Nina M. Flores & Alexander J. Northrop & Jeffrey Schlegelmilch & Mathew V. Kiang & Joan A. Casey, 2023. "Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    5. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    6. Adán Medina & Juana Isabel Méndez & Pedro Ponce & Therese Peffer & Arturo Molina, 2022. "Embedded Real-Time Clothing Classifier Using One-Stage Methods for Saving Energy in Thermostats," Energies, MDPI, vol. 15(17), pages 1-16, August.
    7. Lee, Zachary E. & Max Zhang, K., 2022. "Unintended consequences of smart thermostats in the transition to electrified heating," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1078-:d:1040270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.