IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1068-d1039901.html
   My bibliography  Save this article

A High-Efficiency QR Flyback DC–DC Converter with Reduced Switch Voltage Stress Realized by Applying a Self-Driven Active Snubber (SDAS)

Author

Listed:
  • Jeong-Sang Yoo

    (Department of Electronics Engineering, Cheongju University, Cheongju 28503, Republic of Korea)

  • Jong-Ok Baek

    (R&D Division, Zinnos Inc., Busan 49108, Republic of Korea)

  • Tae-Young Ahn

    (Department of Electrical & Control Engineering, Cheongju University, Cheongju 28503, Republic of Korea)

Abstract

In this paper, a QR flyback converter using a self-driven active snubber (SDAS) was proposed to solve the problem of voltage surge in the switch of QR flyback converters. In the proposed converter, the SDAS consisting of a clamping capacitor and an active switch can be configured in parallel with the main switch or transformer to reduce the voltage surge in the switch. To confirm the steady-state characteristics of the QR flyback converter to which the proposed SDAS is applied, equivalent circuits for each state were constructed, and the equations and characteristics for each state were determined. A 60 W class small AC–DC adapter was constructed to confirm the effectiveness of the proposed converter and the control circuit method, and the experimental results were analyzed. The size of the experimental AC–DC adapter was 74 × 29 × 23 mm , and it had a high power density of 20 W / in 3 or more. The experimental circuit was limited to the high power conversion efficiency of up to 91.56%, and the maximum voltage surge in the switch was approximately 450 V. One of the reasons for such high efficiency is the SDAS circuit, which sufficiently reduces the voltage surge of the QR flyback switch, compared with the RCD clamp circuit, and does not consume power in principle.

Suggested Citation

  • Jeong-Sang Yoo & Jong-Ok Baek & Tae-Young Ahn, 2023. "A High-Efficiency QR Flyback DC–DC Converter with Reduced Switch Voltage Stress Realized by Applying a Self-Driven Active Snubber (SDAS)," Energies, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1068-:d:1039901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaobin Li & Hongbo Ma & Junhong Yi & Song Lu & Jianping Xu, 2020. "A Comparative Study of GaN HEMT and Si MOSFET-Based Active Clamp Forward Converters," Energies, MDPI, vol. 13(16), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanming Xu & Carl Ngai Man Ho & Avishek Ghosh & Dharshana Muthumuni, 2021. "Generalized Behavioral Modelling Methodology of Switch-Diode Cell for Power Loss Prediction in Electromagnetic Transient Simulation," Energies, MDPI, vol. 14(5), pages 1-23, March.
    2. Ke Li & Paul Leonard Evans & Christopher Mark Johnson & Arnaud Videt & Nadir Idir, 2021. "A GaN-HEMT Compact Model Including Dynamic R DSon Effect for Power Electronics Converters," Energies, MDPI, vol. 14(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1068-:d:1039901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.