IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p781-d1030348.html
   My bibliography  Save this article

Sliding Mode Predictive Current Control for Single-Phase H-Bridge Converter with Parameter Robustness

Author

Listed:
  • Wei Zheng

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Zhaolong Sun

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Baolong Liu

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

Abstract

As the important technology of renewable energy systems, power electronics technology is directly bound up with the prospect and development of renewable energy technology. As the output end of renewable energy systems, a single-phase H-bridge converter needs to stabilize the output current. When predictive current control (PCC) tracks the reference current, the dynamic response is the fastest, but the control delay and the changes in model parameters will cause the output current steady-state error. The sliding mode predictive current control (SMPCC) algorithm is proposed to control the output current better. The proposed SMPCC scheme uses the combination of traditional PCC and variable structure scheme, and it establishes the mathematical model according to the state equation of the converter. Taking the exponential reaching law as control law, the expression of the variable structure controller is obtained. The MATLAB experimental and simulation results show that SMPCC can not only improve its robustness to the parameter changes but also obtain better steady-state performance while enhancing the rapidity of the current changes. In conclusion, SMPCC has a better control effect in the converter.

Suggested Citation

  • Wei Zheng & Zhaolong Sun & Baolong Liu, 2023. "Sliding Mode Predictive Current Control for Single-Phase H-Bridge Converter with Parameter Robustness," Energies, MDPI, vol. 16(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:781-:d:1030348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thi Thu Em Vo & Hyeyoung Ko & Junho Huh & Namje Park, 2021. "Overview of Possibilities of Solar Floating Photovoltaic Systems in the OffShore Industry," Energies, MDPI, vol. 14(21), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Fanxu & Bi, Cheng & Sree, Dharma & Huang, Guoxing & Zhang, Ningchuan & Law, Adrian Wing-Keung, 2023. "An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms," Applied Energy, Elsevier, vol. 348(C).
    2. Richard Grünwald & Wenling Wang & Yan Feng, 2022. "Politicization of the Hydropower Dams in the Lancang-Mekong Basin: A Review of Contemporary Environmental Challenges," Energies, MDPI, vol. 15(5), pages 1-23, February.
    3. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Gaetano Mannino & Giuseppe Marco Tina & Mario Cacciato & Leonardo Merlo & Alessio Vincenzo Cucuzza & Fabrizio Bizzarri & Andrea Canino, 2023. "Photovoltaic Module Degradation Forecast Models for Onshore and Offshore Floating Systems," Energies, MDPI, vol. 16(5), pages 1-18, February.
    5. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    6. Jun Wang & Peter D. Lund, 2022. "Review of Recent Offshore Photovoltaics Development," Energies, MDPI, vol. 15(20), pages 1-14, October.
    7. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Bi, Cheng & Law, Adrian Wing-Keung, 2023. "Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:781-:d:1030348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.