IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p591-d1024723.html
   My bibliography  Save this article

Study of a Pilot Scale Microbial Electrosynthesis Reactor for Organic Waste Biorefinery

Author

Listed:
  • Jiang-Hao Tian

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Rémy Lacroix

    (6TMIC Ingénieries, 9 Rue du Développement, 31320 Castanet-Tolosan, France)

  • Asim Ali Yaqoob

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Chrystelle Bureau

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Cédric Midoux

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

  • Elie Desmond-Le Quéméner

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France
    INRAE, University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France)

  • Théodore Bouchez

    (Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France)

Abstract

Microbial electrochemical technologies now enable microbial electrosynthesis (MES) of organic compounds using microbial electrolysis cells handling waste organic materials. An electrolytic cell with an MES cathode may generate soluble organic molecules at a higher market price than biomethane, thereby satisfying both economic and environmental goals. However, the long-term viability of bioanode activity might become a major concern. In this work, a 15-L MES reactor was designed with specific electrode configurations. An electrochemical model was established to assess the feasibility and possible performance of the design, considering the aging of the bioanode. The reactor was then constructed and tested for performance as well as a bioanode regeneration assay. Biowaste from an industrial deconditioning platform was used as a substrate for bioanode. The chemical oxygen demand (COD) removal rate in the anodic chamber reached 0.83 g day −1 L −1 of anolyte. Acetate was produced with a rate of 0.53 g day −1 L −1 of catholyte, reaching a maximum concentration of 8.3 g L −1 . A potential difference (from 0.6 to 1.2 V) was applied between the bioanode and biocathode independent of reference electrodes. The active biocathode was dominated by members of the genus Pseudomonas , rarely reported so far for MES activity.

Suggested Citation

  • Jiang-Hao Tian & Rémy Lacroix & Asim Ali Yaqoob & Chrystelle Bureau & Cédric Midoux & Elie Desmond-Le Quéméner & Théodore Bouchez, 2023. "Study of a Pilot Scale Microbial Electrosynthesis Reactor for Organic Waste Biorefinery," Energies, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:591-:d:1024723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    2. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karamanev, Dimitre & Pupkevich, Victor & Penev, Kalin & Glibin, Vassili & Gohil, Jay & Vajihinejad, Vahid, 2017. "Biological conversion of hydrogen to electricity for energy storage," Energy, Elsevier, vol. 129(C), pages 237-245.
    2. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.
    3. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    4. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    5. Eljamal, Osama & Eljamal, Ramadan & Falyouna, Omar & Maamoun, Ibrahim & Thompson, Ian P., 2024. "Exceptional contribution of iron nanoparticle and aloe vera biomass additives to biogas production from anaerobic digestion of waste sludge," Energy, Elsevier, vol. 302(C).
    6. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    7. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    8. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    9. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    10. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    12. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    13. Raúl Santiago Muñoz-Aguilar & Daniele Molognoni & Pau Bosch-Jimenez & Eduard Borràs & Mónica Della Pirriera & Álvaro Luna, 2018. "Design, Operation, Modeling and Grid Integration of Power-to-Gas Bioelectrochemical Systems," Energies, MDPI, vol. 11(8), pages 1-15, July.
    14. Stergios Vakalis & Konstantinos Moustakas, 2019. "Applications of the 3T Method and the R1 Formula as Efficiency Assessment Tools for Comparing Waste-to-Energy and Landfilling," Energies, MDPI, vol. 12(6), pages 1-11, March.
    15. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    16. Rubén Rodríguez-Alegre & Alba Ceballos-Escalera & Daniele Molognoni & Pau Bosch-Jimenez & David Galí & Edxon Licon & Monica Della Pirriera & Julia Garcia-Montaño & Eduard Borràs, 2019. "Integration of Membrane Contactors and Bioelectrochemical Systems for CO 2 Conversion to CH 4," Energies, MDPI, vol. 12(3), pages 1-19, January.
    17. Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
    18. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    19. Luis G. Cortés & J. Barbancho & D. F. Larios & J. D. Marin-Batista & A. F. Mohedano & C. Portilla & M. A. de la Rubia, 2022. "Full-Scale Digesters: An Online Model Parameter Identification Strategy," Energies, MDPI, vol. 15(20), pages 1-17, October.
    20. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:591-:d:1024723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.