IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8117-d1301946.html
   My bibliography  Save this article

Techno-Economic Analysis of a Highly Renewable and Electrified District Heating Network Operating in the Balancing Markets

Author

Listed:
  • Nima Javanshir

    (Department of Mechanical Engineering, School of Engineering, Aalto University, FI-00076 Aalto, Finland)

  • Sanna Syri

    (Department of Mechanical Engineering, School of Engineering, Aalto University, FI-00076 Aalto, Finland)

Abstract

In pursuit of Finland’s carbon neutrality objective by 2035, integrating renewable energy sources into the power grid is essential. To address the stochastic nature of these resources, additional sources of flexibility are required to maintain grid stability. Meanwhile, district heating network (DHN) operators in Finland are decommissioning fossil fuel-based combined heat and power plants (CHPs) and electrifying heating systems with heat pumps (HPs) and electric boilers. A techno-economic assessment and the optimized operation of DHN-connected HPs and electric boilers in providing ancillary balancing services were explored in this study. The primary goal was to maximize the potential revenue for DHN operators through participation in the day-ahead electricity market and frequency containment reserve (FCR) balancing markets. Three interconnected DHNs in the Helsinki metropolitan area were optimized based on 2019 data and each operator’s decarbonization strategies for 2025. HPs are expected to achieve the highest profit margins in the FCR-D up-regulation market, while electric boilers could generate substantial profits from the FCR-D down-regulation market. In contrast to other balancing markets studied, the FCR-N market exhibited limited profit potential. Sensitivity analysis indicated that spot electricity prices and CO 2 emission allowance prices significantly influence the profitability derived from balancing markets.

Suggested Citation

  • Nima Javanshir & Sanna Syri, 2023. "Techno-Economic Analysis of a Highly Renewable and Electrified District Heating Network Operating in the Balancing Markets," Energies, MDPI, vol. 16(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8117-:d:1301946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vanhoudt, D. & Geysen, D. & Claessens, B. & Leemans, F. & Jespers, L. & Van Bael, J., 2014. "An actively controlled residential heat pump: Potential on peak shaving and maximization of self-consumption of renewable energy," Renewable Energy, Elsevier, vol. 63(C), pages 531-543.
    2. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 589-612.
    3. Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
    4. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
    2. White, Philip R. & Rhodes, Joshua D. & Wilson, Eric J.H. & Webber, Michael E., 2021. "Quantifying the impact of residential space heating electrification on the Texas electric grid," Applied Energy, Elsevier, vol. 298(C).
    3. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).
    4. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
    5. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    6. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    7. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    8. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    9. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    10. Kim, Eun-Hwan & Park, Yong-Gi & Roh, Jae Hyung, 2019. "Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix," Energy Policy, Elsevier, vol. 129(C), pages 1056-1069.
    11. Peter Cramton, 2022. "Fostering Resiliency with Good Market Design: Lessons from Texas," ECONtribute Discussion Papers Series 145, University of Bonn and University of Cologne, Germany.
    12. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    13. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    14. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Martin Bichler & Johannes Knörr & Felipe Maldonado, 2023. "Pricing in Nonconvex Markets: How to Price Electricity in the Presence of Demand Response," Information Systems Research, INFORMS, vol. 34(2), pages 652-675, June.
    16. Peter Cramton & Emmanuele Bobbio & David Malec & Pat Sujarittanonta, 2022. "Electricity Markets in Transition: A Multi-Decade Micro-Model of Entry and Exit in Advanced Wholesale Markets," ECONtribute Discussion Papers Series 183, University of Bonn and University of Cologne, Germany.
    17. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    18. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    19. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Micha Kahlen & Karsten Schroer & Wolfgang Ketter & Alok Gupta, 2024. "Smart Markets for Real-Time Allocation of Multiproduct Resources: The Case of Shared Electric Vehicles," Information Systems Research, INFORMS, vol. 35(2), pages 871-889, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8117-:d:1301946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.