IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8004-d1297681.html
   My bibliography  Save this article

Elevating the Practical Application of Sodium-Ion Batteries through Advanced Characterization Studies on Cathodes

Author

Listed:
  • Mengya Li

    (Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

Abstract

Sodium-ion batteries (SIBs) have emerged as promising alternatives to their lithium-ion counterparts due to the abundance of sodium resources and their potential for cost-effective energy storage solutions. The chemistry for SIBs has been investigated since the 1980s, but it went through a slow research and development process. Recently, there has been an acceleration in technology maturation due to a supply chain crisis originating from unequal resource distribution and sustainability and safety concerns regarding lithium-ion batteries. However, the practical application of SIBs has been hindered primarily by challenges related to cathode materials, specifically, surface and structural stabilities in different conditions. Through the integration of advanced techniques such as in situ spectroscopy, operando diffraction, and high-resolution microscopy, a comprehensive understanding of the cathode’s dynamic behavior and degradation mechanisms can be achieved. The identified structural modifications, phase transitions, and degradation pathways offer critical insights into the design of robust cathode materials with prolonged cycling stability, fast charging capability, high energy density, great low-temperature performance, and safety. This review underscores the pivotal role of cutting-edge characterization techniques in guiding the development of high-performance sodium-ion batteries, thereby fostering the realization of sustainable and efficient energy storage solutions for diverse technological applications.

Suggested Citation

  • Mengya Li, 2023. "Elevating the Practical Application of Sodium-Ion Batteries through Advanced Characterization Studies on Cathodes," Energies, MDPI, vol. 16(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8004-:d:1297681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert A. House & Urmimala Maitra & Miguel A. Pérez-Osorio & Juan G. Lozano & Liyu Jin & James W. Somerville & Laurent C. Duda & Abhishek Nag & Andrew Walters & Ke-Jin Zhou & Matthew R. Roberts & Pete, 2020. "Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes," Nature, Nature, vol. 577(7791), pages 502-508, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8004-:d:1297681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.