IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p7945-d1295656.html
   My bibliography  Save this article

Multi-Objective Co-Operative Game-Based Optimization for Park-Level Integrated Energy System Based on Exergy-Economic Analysis

Author

Listed:
  • Lili Mo

    (Architectural Design Research Institute of SCUT, South China University of Technology, Guangzhou 510000, China
    School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Zeyu Deng

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Haoyong Chen

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Junkun Lan

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

Abstract

The park-level integrated energy system (PIES) can realize the gradient utilization of energy and improve the efficiency of energy utilization through the coupling between multiple types of energy sub-networks. However, energy analysis and exergy analysis cannot be used to evaluate the economics of PIES. In addition, conflicts of interest among integrated energy suppliers make the economic scheduling of the PIES more difficult. In this paper, we propose a multi-objective collaborative game-based optimization method based on exergy economics, in which the introduction of exergy economics realizes the economic assessment of any link within the PIES, and the optimization model constructed based on the potential game solves the problem of conflict of interest among multiple energy suppliers and improves the benefits of each supplier. Finally, taking a PIES in Guangzhou as an example, the rationality of the optimization scheme proposed in this paper is demonstrated by comparing it with the classical optimization scheme.

Suggested Citation

  • Lili Mo & Zeyu Deng & Haoyong Chen & Junkun Lan, 2023. "Multi-Objective Co-Operative Game-Based Optimization for Park-Level Integrated Energy System Based on Exergy-Economic Analysis," Energies, MDPI, vol. 16(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7945-:d:1295656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/7945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/7945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    2. Ma, Kai & Zhang, Rencai & Yang, Jie & Song, Debao, 2023. "Collaborative optimization scheduling of integrated energy system considering user dissatisfaction," Energy, Elsevier, vol. 274(C).
    3. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    4. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    5. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    6. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    7. Yan Xiong & Jiakun Fang, 2022. "Co-Operative Optimization Framework for Energy Management Considering CVaR Assessment and Game Theory," Energies, MDPI, vol. 15(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    3. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    4. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    5. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    6. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    7. Zhao, Wenna & Ma, Kai & Yang, Jie & Guo, Shiliang, 2024. "A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park," Energy, Elsevier, vol. 302(C).
    8. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Qingbo Tan & Zhuning Wang & Wei Fan & Xudong Li & Xiangguang Li & Fanqi Li & Zihao Zhao, 2022. "Development Path and Model Design of a New Energy Vehicle in China," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    11. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    13. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    14. Dong, Hongxin & Han, Zhongyang & Zhao, Jun & Wang, Wei, 2024. "A dynamic security region construction method and its existence proof for gaseous system," Applied Energy, Elsevier, vol. 367(C).
    15. Xue, Jian & Guo, Meichen & Shi, Shaoqing & Zhao, Laijun, 2024. "Energy-conservation model of inter-provincial cooperation that accounts GDP and social benefits," Energy, Elsevier, vol. 290(C).
    16. Süle, Zoltán & Baumgartner, János & Dörgő, Gyula & Abonyi, János, 2019. "P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems," Energy, Elsevier, vol. 179(C), pages 989-1003.
    17. Long Wang, 2023. "Optimal Scheduling Strategy for Multi-Energy Microgrid Considering Integrated Demand Response," Energies, MDPI, vol. 16(12), pages 1-17, June.
    18. Hu, Zhengbiao & He, Dongfeng & Zhao, Hongbo, 2023. "Multi-objective optimization of energy distribution in steel enterprises considering both exergy efficiency and energy cost," Energy, Elsevier, vol. 263(PB).
    19. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    20. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7945-:d:1295656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.