IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7648-d1282919.html
   My bibliography  Save this article

Analysis of Tariffs and the Impact on Voltage Variations in Low-Voltage Grids with Smart Charging and Renewable Energy

Author

Listed:
  • Daniel Jung

    (Department of Electrical Engineering, Linköping University, SE 581 83 Linköping, Sweden
    These authors contributed equally to this work.)

  • Christofer Sundström

    (Department of Electrical Engineering, Linköping University, SE 581 83 Linköping, Sweden
    These authors contributed equally to this work.)

Abstract

The rapid increase in electric vehicles (EVs) and installed photovoltaic systems (PV) has resulted in new challenges for electric systems, e.g., voltage variations in low-voltage grids. Grid owners cannot directly control the power consumption of the end consumers. However, by the design of transparent tariffs, economic incentives are introduced for the end consumers to adjust their EV charging patterns. In this work, the main objective is to design a time-of-use pricing tariff to reduce the voltage variations in a low-voltage grid when introducing PVs and EVs with smart charging. Data from an existing low-voltage grid and hourly data from household power consumption, together with models of PV and EV charging, are used to simulate the voltage fluctuations based on the modified electric consumption. The results show that a time-of-use pricing tariff taking into consideration maximum peak power is important to reduce grid voltage variations. Another observation is that the use of economic incentives, such as subsidies when selling power from the household, combined with V2G technology can be economical for households but increases the voltage variations in the grid.

Suggested Citation

  • Daniel Jung & Christofer Sundström, 2023. "Analysis of Tariffs and the Impact on Voltage Variations in Low-Voltage Grids with Smart Charging and Renewable Energy," Energies, MDPI, vol. 16(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7648-:d:1282919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    2. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    2. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    3. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    4. Shen Wang & Guohe Huang & Yurui Fan, 2018. "A Multistage Distribution-Generation Planning Model for Clean Power Generation under Multiple Uncertainties—A Case Study of Urumqi, China," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
    5. Morstyn, Thomas & Chilcott, Martin & McCulloch, Malcolm D., 2019. "Gravity energy storage with suspended weights for abandoned mine shafts," Applied Energy, Elsevier, vol. 239(C), pages 201-206.
    6. Bandyopadhyay, Arkasama & Leibowicz, Benjamin D. & Webber, Michael E., 2021. "Solar panels and smart thermostats: The power duo of the residential sector?," Applied Energy, Elsevier, vol. 290(C).
    7. Marija Miletić & Hrvoje Pandžić & Dechang Yang, 2020. "Operating and Investment Models for Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-33, September.
    8. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
    9. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    10. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).
    11. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    12. Avau, Michiel & Govaerts, Niels & Delarue, Erik, 2021. "Impact of distribution tariffs on prosumer demand response," Energy Policy, Elsevier, vol. 151(C).
    13. Rezaeimozafar, Mostafa & Monaghan, Rory F.D. & Barrett, Enda & Duffy, Maeve, 2022. "A review of behind-the-meter energy storage systems in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
    15. Shaw-Williams, Damian & Susilawati, Connie, 2020. "A techno-economic evaluation of Virtual Net Metering for the Australian community housing sector," Applied Energy, Elsevier, vol. 261(C).
    16. Byuk-Keun Jo & Seungmin Jung & Gilsoo Jang, 2019. "Feasibility Analysis of Behind-the-Meter Energy Storage System According to Public Policy on an Electricity Charge Discount Program," Sustainability, MDPI, vol. 11(1), pages 1-17, January.
    17. Biggins, F.A.V. & Travers, D. & Ejeh, J.O. & Lee, R. & Buckley, A. & Brown, S., 2023. "The economic impact of location on a solar farm co-located with energy storage," Energy, Elsevier, vol. 278(C).
    18. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    19. Zhang, Yajun & Gu, Chenghong & Yan, Xiaohe & Li, Furong, 2020. "Cournot oligopoly game-based local energy trading considering renewable energy uncertainty costs," Renewable Energy, Elsevier, vol. 159(C), pages 1117-1127.
    20. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7648-:d:1282919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.