IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7608-d1281642.html
   My bibliography  Save this article

Achieving Net Zero Carbon Performance in a French Apartment Building?

Author

Listed:
  • Alpha Hamid Dicko

    (CES (Centre for Energy Efficiency of Systems), MINES Paris—PSL Research University, 75006 Paris, France)

  • Charlotte Roux

    (CES (Centre for Energy Efficiency of Systems), MINES Paris—PSL Research University, 75006 Paris, France)

  • Bruno Peuportier

    (CES (Centre for Energy Efficiency of Systems), MINES Paris—PSL Research University, 75006 Paris, France)

Abstract

Containing global warming to 1.5 °C implies staying on a given carbon budget and therefore being able to design net zero carbon buildings by 2050. A case study corresponding to a French residential building is used to assess the feasibility of achieving this target. Starting from an actual construction built in 2016, various improvement measures are studied: lowering heating energy needs, implementing bio-sourced materials and renewable energy systems (geothermal heat pump, solar domestic hot water production, and photovoltaic electricity production). Dynamic thermal simulation is used to evaluate energy consumption and overheating risk in hot periods. Greenhouse gas emissions are quantified using a consequential life cycle assessment approach, considering that during a transition period, exporting electricity avoids impacts corresponding to marginal production on the grid. Avoided impacts decrease and become zero when the grid is ultimately “decarbonized”. From this point, the building should be net zero emissions, but there remain unavoidable emissions. Residual GhG (greenhouse gas) emissions account for 5.6 kgCO 2 eq/m 2 annually. The possibility of offsetting these emissions is investigated, considering sequestration in forests or vegetation systems. A net zero emission level can be achieved, but on a national level, it would require that the whole sequestration potential of forest growth be devoted to offset emissions of new construction. A circular economy for construction products and equipment and considering water use will be needed to further decrease environmental impacts.

Suggested Citation

  • Alpha Hamid Dicko & Charlotte Roux & Bruno Peuportier, 2023. "Achieving Net Zero Carbon Performance in a French Apartment Building?," Energies, MDPI, vol. 16(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7608-:d:1281642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    2. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    3. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    4. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    5. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    6. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    7. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    8. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    9. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    10. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    11. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    12. Janet Judy McIntyre‐Mills, 2013. "Anthropocentrism and Well‐being: A Way Out of the Lobster Pot?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 136-155, March.
    13. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    14. Ronja Teschner & Jessica Ruppen & Basil Bornemann & Rony Emmenegger & Lucía Aguirre Sánchez, 2021. "Mapping Sustainable Diets: A Comparison of Sustainability References in Dietary Guidelines of Swiss Food Governance Actors," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    15. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    16. Barbara Predan & Petra Černe Oven, 2023. "Developing a Pedagogical Approach with the Aim of Empowering Educators and Students to Address Emerging Global Issues such as Climate Change and Social Justice: A Case Study," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    17. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    18. Hörisch, Jacob & Ortas, Eduardo & Schaltegger, Stefan & Álvarez, Igor, 2015. "Environmental effects of sustainability management tools: An empirical analysis of large companies," Ecological Economics, Elsevier, vol. 120(C), pages 241-249.
    19. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    20. Gampe, Anja & Hubmann, Georg & Kapeller, Jakob, 2024. "Sozialer Fortschritt in offenen Gesellschaften des 21. Jahrhunderts: Unrealistische Utopie oder notwendige Möglichkeit?," ifso working paper series 31, University of Duisburg-Essen, Institute for Socioeconomics (ifso).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7608-:d:1281642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.