IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7559-d1279361.html
   My bibliography  Save this article

Test and Analysis of the Heat Exchanger for Small Ocean Thermal Energy Power Generation Devices

Author

Listed:
  • Xiao Wu

    (National Ocean Technology Center, Tianjin 300112, China
    Key Laboratory of Ocean Observation Technology, MNR, Tianjin 300112, China)

  • Xiangnan Wang

    (National Ocean Technology Center, Tianjin 300112, China)

  • Bingzhen Wang

    (National Ocean Technology Center, Tianjin 300112, China
    Key Laboratory of Ocean Observation Technology, MNR, Tianjin 300112, China)

Abstract

The application of ocean thermal energy conversion is an effective method to extend underwater vehicles’ running times and operating ranges, and the solid–liquid phase transition of the phase change material (PCM) in the heat exchanger is a key process for underwater vehicles to collect ocean thermal energy. This study proposes a heat exchanger structure for a small-size thermal energy power generation device and establishes the heat transfer model for the heat exchanger. Simulations were conducted considering convective heat transfer, and the obtained results demonstrated the feasibility of the designed structure. A prototype of the heat exchanger was developed, and physical experiments were conducted to validate the performance of the prototype. The results show that the melting process of the heat exchanger can be completed within 6 to 12 h, the solidification process can be completed within 3 to 7 h, and the heat transfer time decreases with the increase in temperature difference, verifying the compatibility with the underwater vehicles’ working patterns. Moreover, the heat exchanger could theoretically extend their lifetime. The results can provide a reference for the structural design and optimization of the heat exchanger for small ocean thermal energy power generation devices in the future.

Suggested Citation

  • Xiao Wu & Xiangnan Wang & Bingzhen Wang, 2023. "Test and Analysis of the Heat Exchanger for Small Ocean Thermal Energy Power Generation Devices," Energies, MDPI, vol. 16(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7559-:d:1279361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kong, Qiaoling & Ma, Jie & Xia, Dongying, 2010. "Numerical and experimental study of the phase change process for underwater glider propelled by ocean thermal energy," Renewable Energy, Elsevier, vol. 35(4), pages 771-779.
    2. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    3. Wang, Guohui & Yang, Yanan & Wang, Shuxin, 2020. "Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arias, Francisco J., 2023. "The thermodynamic limit of extractable kinetic energy buoyancy engine," Applied Energy, Elsevier, vol. 350(C).
    2. Chen, Bingzhe & Yang, Canjun & Yao, Zesheng & Xia, Qingchao & Chen, Yanhu, 2024. "Research on coupling enhanced heat transfer with energy storage in ocean thermal engine systems," Applied Energy, Elsevier, vol. 360(C).
    3. Wang, Guohui & Yang, Yanan & Wang, Shuxin, 2020. "Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review," Applied Energy, Elsevier, vol. 278(C).
    4. Jung, Hyunjun & Subban, Chinmayee V. & McTigue, Joshua Dominic & Martinez, Jayson J. & Copping, Andrea E. & Osorio, Julian & Liu, Jian & Deng, Z. Daniel, 2022. "Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    6. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
    7. Liang, Shen & Zheng, Hongfei & Kang, Huifang & Zhao, Zhiyong & Ma, Xinglong & Zhu, Ziye & Cheng, Haiying & Yang, Jinrui, 2024. "Optical and electrical behavior of an underwater linear-focusing solar concentrating photovoltaic," Renewable Energy, Elsevier, vol. 221(C).
    8. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.
    10. Hongwei Zhang & Xinghai Ma & Yanan Yang, 2022. "An External Ocean Thermal Energy Power Generation Modular Device for Powering Smart Float," Energies, MDPI, vol. 15(10), pages 1-18, May.
    11. Yan, Peiliang & Fan, Weijun & Yang, Yan & Ding, Hongbing & Arshad, Adeel & Wen, Chuang, 2022. "Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations," Applied Energy, Elsevier, vol. 327(C).
    12. Falcão Carneiro, J. & Gomes de Almeida, F., 2016. "Model of a thermal driven volumetric pump for energy harvesting in an underwater glider," Energy, Elsevier, vol. 112(C), pages 28-42.
    13. Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
    14. Shamberger, Patrick J. & Bruno, Nickolaus M., 2020. "Review of metallic phase change materials for high heat flux transient thermal management applications," Applied Energy, Elsevier, vol. 258(C).
    15. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    16. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    17. Wenlong Tian & Zhaoyong Mao & Fuliang Zhao, 2017. "Design and Numerical Simulations of a Flow Induced Vibration Energy Converter for Underwater Mooring Platforms," Energies, MDPI, vol. 10(9), pages 1-20, September.
    18. Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.
    19. Xue, Gang & Liu, Yanjun & Si, Weiwei & Ji, Chen & Guo, Fengxiang & Li, Zhitong, 2020. "Energy recovery and conservation utilizing seawater pressure in the working process of Deep-Argo profiling float," Energy, Elsevier, vol. 195(C).
    20. Ma, Xinglong & Wang, Zhenzhen & Zhao, Zhiyong & Liang, Shen & Liu, Zuyi & Zheng, Hongfei, 2024. "Simultaneous production of electricity and potable water underwater by integrating concentrating photovoltaic with air gap membrane distillation," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7559-:d:1279361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.