IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7502-d1276923.html
   My bibliography  Save this article

Numerical Investigation on Mesoscale Evolution of Hydraulic Fractures in Hydrate-Bearing Sediments

Author

Listed:
  • Xiaowei Liang

    (Shale Oil Development Branch, PetroChina Changqing Oilfield Company, Qingyang 745000, China)

  • Hui Zhao

    (Shale Oil Development Branch, PetroChina Changqing Oilfield Company, Qingyang 745000, China)

  • Yongchao Dang

    (Shale Oil Development Branch, PetroChina Changqing Oilfield Company, Qingyang 745000, China)

  • Qihong Lei

    (Exploration and Development Research Institute, PetroChina Changqing Oilfield Company, Xi’an 710016, China)

  • Shaoping Wang

    (Digital and Intelligentization Division, PetroChina Changqing Oilfield Company, Xi’an 710016, China)

  • Xiaorui Wang

    (Shale Oil Development Branch, PetroChina Changqing Oilfield Company, Qingyang 745000, China)

  • Huiqiang Chai

    (Shale Oil Development Branch, PetroChina Changqing Oilfield Company, Qingyang 745000, China)

  • Jianbo Jia

    (Shale Oil Development Branch, PetroChina Changqing Oilfield Company, Qingyang 745000, China)

  • Yafei Wang

    (College of Construction Engineering, Jilin University, Changchun 130026, China)

Abstract

Hydraulic fracturing is widely recognized as a potential stimulation technology for the development of challenging natural gas hydrate. However, the fracturing behavior of non-diagenetic hydrate reservoirs has peculiar characteristics that are different from those of conventional oil and gas reservoirs. Herein, a fully coupled fluid-mechanical model for simulating hydraulic fracturing in hydrate-bearing sediments (HBS) was established based on the discrete element method, and the influence of hydrate saturation, in situ stress, and injection rate on the meso-fracture evolution was investigated. The results indicate that with the increase in hydrate saturation, the fracture morphology transitions from bi-wing to multi-branch, thereby enhancing fracture complexity. Both tensile and shear failure modes exist, and the tensile failure between the weakly cemented sediment particles is dominant. The tensile strength of HBS is an exponential function of hydrate saturation, with the breakdown pressure being governed by hydrate saturation and in situ stress, with the form being consistent with the classical Kirsch equation. Additionally, lower in situ stress and higher injection rates are conducive to the generation of microcracks, whereas an excessive injection rate reduces the fracture length. These findings contribute to understanding the meso-evolution mechanism of hydraulic fractures and guide the design of on-site hydraulic fracturing plans of natural gas hydrate reservoirs.

Suggested Citation

  • Xiaowei Liang & Hui Zhao & Yongchao Dang & Qihong Lei & Shaoping Wang & Xiaorui Wang & Huiqiang Chai & Jianbo Jia & Yafei Wang, 2023. "Numerical Investigation on Mesoscale Evolution of Hydraulic Fractures in Hydrate-Bearing Sediments," Energies, MDPI, vol. 16(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7502-:d:1276923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bin & Fan, Zhen & Zhao, Jiafei & Lv, Xin & Pang, Weixin & Li, Qingping, 2018. "Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach," Applied Energy, Elsevier, vol. 229(C), pages 858-871.
    2. Jian Zhou & Luqing Zhang & Anika Braun & Zhenhua Han, 2017. "Investigation of Processes of Interaction between Hydraulic and Natural Fractures by PFC Modeling Comparing against Laboratory Experiments and Analytical Models," Energies, MDPI, vol. 10(7), pages 1-18, July.
    3. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
    3. Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
    4. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    5. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    6. He, Juan & Li, Xiaosen & Chen, Zhaoyang, 2023. "Effective permeability changes during hydrate production," Energy, Elsevier, vol. 282(C).
    7. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong, 2019. "3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection," Energy, Elsevier, vol. 188(C).
    8. Shuaishuai Nie & Chen Chen & Min Chen & Jian Song & Yafei Wang & Yingrui Ma, 2022. "Numerical Evaluation of a Novel Development Mode for Challenging Oceanic Gas Hydrates Considering Methane Leakage," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    9. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    10. Weige Han & Zhendong Cui & Zhengguo Zhu & Xianmin Han, 2022. "The Effect of Bedding Plane Angle on Hydraulic Fracture Propagation in Mineral Heterogeneity Model," Energies, MDPI, vol. 15(16), pages 1-18, August.
    11. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    12. Lin Liu & Xiumei Zhang & Xiuming Wang, 2021. "Wave Propagation Characteristics in Gas Hydrate-Bearing Sediments and Estimation of Hydrate Saturation," Energies, MDPI, vol. 14(4), pages 1-21, February.
    13. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    14. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    16. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    17. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    19. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    20. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7502-:d:1276923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.